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1 Classical Information Theory

What is Information? We are all familiar with the word “information” and probably

understand what it roughly means. However, in a technological context, we need to

give it a precise meaning and also find a way to quantify the amount of information

in a message. Suppose we make a statement like “there will not be an earthquake in

Mumbai tomorrow”. What is the information content of this statement? What additional

knowledge it gives us that we did not have? Almost next to nothing because that is the

way things are supposed to happen in Mumbai. On the other hand, supposing a statement

is made that “there will be an earthquake in Mumbai tomorrow”. This will count as a

statement with significant amount of information because this event has a low probability

of occurrence. Consider the statement “it is cold in Bombay today”. What information

does this statement convey? Is today cold compared to what it was yesterday or is it as

compared to what it was a year before? Is it colder than it is in Alaska or as compared to

Chennai? We do know that the statement has some information, though not very precise.

Suppose we define a day to be cold if the temperature is less than 22◦. Does this statement

give more information? Yes, but only partly so. Let us make it a little more precise by

saying that “cold” in Bombay means that the temperature T is between 16◦ and 22◦, i.e.

17 < T ≤ 22. Assume that the temperature is measured only in integral values. Our

information is better but now there is now an equal probability of the temperature being

17,18, 19, 20, 21 or 22, probability of each is p = 1/6. Thus, associated with a statement

on information is an “uncertainty”. If we try to guess the temperature, say by throwing

a die, we can be right about the temperature with a probability of one sixth. Suppose,

we are told that yesterday the temperature was 19◦ and that today is colder than it was

yesterday. Our uncertainly has now decreased and we can be right about guessing the

temperature by tossing a coin which will give us correct answer with a probability of 1/2.

Thus the information content in a statement is a measure of uncertainty associated with

an event. If we are going to construct a mathematical measure of information contained
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in a message, we need to specify the amount of uncertainty that is there in a message-

the measure of uncertainty cannot be on intuitive ground. Further, we need a measure of

this uncertainty so that when a message is transmitted through a channel, we should be

able to measure the fidelity of transmission by computing the uncertainty at the receiving

end. As the word “information” means different things in different context (for instance,

a cognitive scientist may define information as a piece of knowledge), it is important to

point out that our approach here is content neutral, we are only interested in problem

of data communication and reception. In order to be be able to communicate some

information, a system must be capable of being in at least two states These two states

could be electrical levels with ground (zero volt) or +5 volts, an atomic system with spin

up or down, an ammonia molecule with the nitrogen atom being above or below the plane

defined by three hydrogen atoms etc. Mathematically we represent the two state systems

by 0 and 1. We assume that we can encode the two states of the system by these two

digits and define this as a “bit”. (When the digits represent classical two state systems,

we occasionally call it a cbit. If instead, we have a system which can exist in m different

states, we will need more than a single bit to encode such a system. The minimum number

n which satisfies 2n < m is the minimum number of bits required to describe m different

states. For instance a 4 state system requires 2 bits to describe it and we can represent

the four states by 00, 01, 10 and 11. Hartley proposed the formula for the number of bits

n that is required to send m different messages, the formula for the number of bits n that

is required to send m different messages,

n = log2m

Thus a byte (= 8 bits) can send up to 256 different messages. How does one measure

information content in a signal? There are two basic approaches. The approach by Claude

Shannon, the one that we will follow, defines the amount of information in a signal as the

number of bits that needs to be transmitted in order to select it from a list of previously

agreed choices. Thus if the previously agreed set has two choices, “who won the presidency

of USA in the recent election?” - (Y) Obama (N) Romney, we need to send only one bit.

Suppose, the number of choices is more, say selecting one candidate out of 8 in an election,

the following decision tree can be used.

The second approach is due to Kolmogorov and Chaitin, where they consider the min-

imum number of bits required to store (compress) a given message. Suppose a source can

only emit one of two possible messages. As per Shannon?s approach, the message is iden-

tified only by sending one bit of information. However, since the message is of arbitrary

length, the corresponding Kolmogorov complexity can be arbitrarily large. Thus whereas

Shannon ignores the message itself and only considers the characteristic of the source

which emits the message, Kolmogorov?s concern is only the message. Kolmogorov?s ap-

proach is frequently termed as algoirithmic approach and we can define complexity of a
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Figure 1: A Decision Tree

message as the length of the shortest algorithm which can describe the message. Let us

clarify this by an example. Consider the string which is 200 bit length 010101 . . . 0101.

Though the string length is 200 bits, the complexity is quite low because one can transmit

it by writing a short program which describes the string as “hundred 01s”. On the other

hand toss a coin 200 times a generate an arbitrary sequence 0110010110011101 . . .. One

cannot write a short program to communicate this exact string by a short program. Thus

the complexity is large.

Shannon?s Entropy Suppose we want to observe a discrete random variable X

which can take finite number of values x1, x2, . . . , xM with probabilities p1, p2, . . . , pM
respectively with the proviso

∑
pi = 1. Let H(p1, p2, ..., pM) be the average uncertainty

associated with the event X = xi, i.e., it is the average uncertainty removed when the

result of the experiment is known. We would like to obtain a mathematical expression

for HM . Let us first discuss the properties that such a function should satisfy.

1. Suppose f(M) is average uncertainty associated with M equally likely events, i.e.,

f(M) = H

(
1

M
,

1

M
, . . .

1

M

)
This means f(2)is the average uncertainty associated with a coin toss, f(6) the

uncertainty associated with throw of a die, etc. Clearly f(M) > f(M ′) if M > M ′.

In otherwards f(M) is a monotonic function of its argument M .

2. Consider two random variables X and Y , the former taking values x1, x2, . . . xM

with equal probability and the latter taking values y1, y2, . . . yN , also with equal

probability. The joint experiment XY has MN events with equal probability. The

average uncertainty associated with the joint experiment XY is f(MN). Suppose

now, the result of X is revealed. This will not remove the uncertainty in Y and we

will be left with an uncertainty f(N). Thus, we have f(MN) − f(M) = f(N), so

that

f(MN) = f(M) + f(N)
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3. Let us now relax the condition of equal probability. Consider an experiment for

measuring a random variable X which has M possible outcomes. The events are

divided into two groups A and B, the former having r outcomes x1, x2, . . . xr and the

latter with M?r outcomes xr+1, xr+2, . . . xM . If the group A is chosen, the outcome

of the event X = xi is
pi∑r
i=1 pi

and if group B is chosen, the outcome of the event

X = xi is
pi∑M

i=r+1 pi
. Suppose Y is the result of the combined experiment in which

we first choose the group (A or B) and then determine the event. Let Y = x1 be

the result. We can determine the probability of the combined experiment, by using

Baye’s theorem,

P (Y = x1) = P (A is chosen & x1 is selected)

= P (A is chosen) × P (x1 | A)

=
r∑

i=1

pi ×
p1∑r
i=1 pi

= p1

This shows that X and Y have the same distribution. This implies that P (Y =

xi) = pi ∀i = 1,M .

Before the compound experiment is performed, the uncertainty associated with the out-

come is H(p1, p2, ..., pM). If the group that has been chosen (A or B) is revealed, the

uncertainty removed is H(pA, pB) = H
(∑r

i=1 pi,
∑M

i=r+1 pi

)
so that the uncertainty re-

maining after the group chosen is revealed is given by

H(p1, p2, . . . , PM)−

(
r∑

i=1

pi,

M∑
i=r+1

pi

)
This must be equal to∑

pi×H
(

p1∑r
i=1 pi

,
p2∑r
i=1 pi

. . . ,
pr∑r
i=1 pi

)
+
∑

pi×H

(
pr+1∑M
i=r+1 pi

,
pr+2∑M
i=r+1 pi

. . . ,
pM∑M

i=r+1 pi

)
Example:

Suppose the group A has two possible outcomes withp1 = 1/2, p2 = 1/4 and the group B

also has two outcomes with p3 = p4 = 1/8, we then have,

H

(
1

2
,
1

4
,
1

8
,
1

8

)
−H

(
3

4
,
1

4

)
=

3

4
H

(
2

3
,
1

3

)
+

1

4

(
1

2
,
1

2

)
The above is known as Grouping Theorem. We also require H(p, 1 − p) to be a

continuous function of p. This is intuitive as a small change in p should lead to a small

change in uncertainty. Thus there are four requirement for a function in order to be a

measure of uncertainty:
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1. f(M) = H(
1

M
,

1

M
. . . ,

1

M
) is a non-negative, monotonic and continuously increas-

ing function of M .

2. f(1) = 0. This is because, if an event is certain then there is no uncertainty.

3. f(MN) = f(M) + f(N)

4. The grouping theorem stated and proved above.

We will now find a function which satisfies the above. which satisfies the four properties

mentioned above. We claim that the function f(M) = C logM where C > 0 is the

function which satisfies the four properties mentioned above.

1. f(M2) = f(M ×M) = f(M) +f(M) = 2f(M). In a similar way one can show that

f(Mk) = kf(M). We also have,

f(M) = f((M1/n)n) = nf(M1/n)

which gives f(M1/n) =
1

n
f(M) and also f(M l/n) = lf(M). By continuity, it then

follows that for any real number a, f(Ma) = af(M). This is obviously satisfied by

C logM .

2. f(1) = f(1 × 1) = f(1) + f(1) = 2f(1) so that f(1) = 0. Since log 1 = 0, this

property is satisfied.

3. Let M > 1. Let r be an arbitrary positive integer. For any integral M , we can then

find an integer k such that Mk ≤ 2r ≤ Mk+1. (Example, let M = 4 and r = 3,

then 2r = 8 which lies between 4 = 41 and 16 = 42, so that k = 1. Since f(M) is a

monotonic function of M , it then follows that

f(Mk) ≤ f(2r) ≤ f(Mk+1)

kf(M) ≤ rf(2) ≤ (k + 1)f(M)

k

r
≤ f(2)

f(M)
≤ k + 1

r

Consider now the function C logM . Since

logMk ≤ log 2r ≤ logMk+1,

we have
k

r
≤ log 2

logM
≤ k + 1

r
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Thus both f(2)/f(M) and log 2/ logM lie between k/r and (k+1)/r. Clearly, the distance

between them on the real line must be less than 1/r. Since r is arbitrary, we can make it

indefinitely large and in this limit

log 2

logM
=

f(2)

f(M)

which shows that

f(M) = C logM

where C = f(2)/f(M) > 0.

Finally, we need to prove that this form satisfies the grouping theorem. We have from

grouping theorem

H(p1, p2, . . . , pM)−H

(
r∑

i=1

pi,
M∑

i=r+1

pi

)
=

r∑
i=1

pi ×H

(
p1∑r
i=1 pi

,
p2∑r
i=1 pi

, . . .
pr∑r
i=1 pi

)

+
M∑

i=r+1

pi ×H

(
pr+1∑r
i=1 pi

,
pr+2∑M

i=r+1 pr+1

, . . .
pr∑M

i=r+1 pi

)
Consider a total of s events each having the same probability and r of them in group

A and s?r of them in group B. We can then write, using pi = 1/s for each of the events,

H

(
1

s
,
1

s
, . . .

1

s

)
−H

(
r

s
,
s− r

s

)
=

r

s
H

(
1

s
,
1

s
, . . .

1

s

)
+

s− r

s
H

(
1

s
,
1

s
, . . .

1

s

)
where, in the above expression there are r arguments of H in the first term to the

right and s− r arguments in the second term. Using the definition of f(m), this gives

f(s) = H

(
r

s
,
s− r

s

)
+

r

s
f(r) +

s− r

s
f(s− r)

Substituting f(M) = C log(M),

C log s = H(p, 1?− p) + cp log r + c(1− p) log(s− r)

which gives

H(p, 1− p) = −C [p log r + (1− p) log(s− r)− log s]

= −C [p log r − p log s + p log s− log s + (1− p) log(s− r)]

= −C
[
p log

r

s
− (1− p) log s + (1− p) log(s− r)

]
= −C[p log p + (1− p) log(1− p)]

We generalize the above to more than two events and assert that
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H({pi}) = −C
M∑
i=1

pi log pi

In the above we have proved this for M = 1 and for M = 2. We can use the method of

induction to prove that if the theorem is valid for M−1, it would be true for M . Dividing

M events into two groups, one containing a single event and the other M − 1 events, we

have,

H(p1, p2, . . . , pM−1, pM) = H(p1 + p2 + . . . + pM−1, pM) + (p1 + p2 + . . . + pM−1)

×H

(
p1∑M−1

i=1 pi
+

p2∑M−1
i=1 pi

+ . . .
pM−1∑M−1
i=1 pi

)
+ pMH(1)

= −C[(p1 + p2 + . . . + pM−1) log(p1 + p2 + . . . + pM−1) + pM log pM ]

− (
M−1∑
i=1

pi)C

[
M−1∑
i=1

pi∑M−1
j=1 pj

log

(
pi∑M−1

j=1 pj

)]
+ pM × 0

= −C

[
M−1∑
i=1

pi log(
M−1∑
i=1

pi) + pM log pM

]
− C

[
(
M−1∑
i=1

pi) log pi − (
M−1∑
i−1

pi) log(
M−1∑
i=1

pi)

]

= C
M∑
i=1

pi log pi

We will take C = 1 and the base of the logarithm to be 2. The above shows that the

uncertainty associated with an event does not depend on the values that X takes but on

the probability of occurrence of the events. Consider tossing of a coin. According to what

we have shown above, since the head and the tail occur with a probability 1/2 each, the

uncertainty associated with a coin toss is

H(
1

2
,
1

2
) = −

∑
i

pi log2 pi = −1

2
log2(1/2)− (1− 1

2
) log2(1−

1

2
) = 1

The uncertainty has its maximum value (1 bit) at phead = ptail = 1/2. If the coin is

biased, the uncertainty decreases because we become more certain on which way the coin

is likely to face (Figure 2).

There are several interpretation of the concept of uncertainty measure.

1. The relation H({pi}) = −
∑

i pi log2 pi is the weighted average of probabilities of

occurrence of various values of a random variable W (X) which assumes the value

− log2 pi when the random variable X takes the value xi, i.e. W takes the value

equal to the negative logarithm of the probability of X = xi

Example : Suppose X takes five values x1, x2, x3, x4 and x5 with probabilities 0.3,

0.2, 0.2, 0.15 and 0.15 respectively. W takes values log2(0.3) = 1.736, log2(0.2) =
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Figure 3: A Decision tree for the number of questions.

2.322, 2.322,− log2(0.15) = 2.737 and 2.737 respectively with the corresponding

probabilities. Adding the contributions, we get H = 2.27 bits of uncertainty.

2. Another interpretation is to regard the uncertainty as the minimum of the number

questions(having answer in the form of yes or no) per event that can be asked to

reveal the result (i.e. remove the uncertainty). Taking the same example as above,

we can look at the decision tree (Figure 3).

the average number of questions that one needs to ask as per the decision tree above

is 2× (0.3 + 0.3 + 0.2) + 3× (0.15 + 0.15) = 2.3 which is greater than the minimum

number 2.27 stated above.

Flipping a coin once gives 1 bit of information. Flipping a coin n times (which is the

same as flipping n coins simultaneously) gives n bit of information, because there are 2n

events each with 1/2n probability.

H = −2n × 1

2n
log2(1/2)n = n

The above can easily be generalized to the case of a continuous variable and we have

in that case
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Figure 4: plot of log(x) (red) and x-1 (violet) against x

H(P ) =

∫
P (x)× log(1/P (x))dx

Gibb’s Inequality

It can be seen from Figure 4 that llog(x)?x?1 (This is valid for any base of the logarithm).

The slope of log x being 1/x, its value at x = 1 is 1 so that the tangent to log x at x = 1

is 1. Further, the tangent line passes through the point x = 1 where its vale is log 1 = 0.

Thus the tangent line is y = x− 1. The equality log x = x− 1 is applicable only at x = 1.

Suppose we have two probability distribution P (x) = {p1, p2, ..., pn} and Q(x) =

{q1, q2, ..., qn}, subject to
∑

i pi =
∑

i qi = 1. Using the above inequality, we can write

∑
i

pi log

(
qi
pi

)
≤
∑
i

pi

(
qi
pi
− 1

)
=
∑
i

(pi − qi) = 0

the equality is satisfied if for every i, pi = qi. This is known as Gibb’s inequality. We

can use Gibb’s inequality to obtain a bound on H(P ) and also examine what probability

distribution maximizes the “entropy” H. Consider the difference H(P ) − log(n). We

have,
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H(P )− log(n) =
∑
i

pi log(
1

pi
)− log(n)

∑
i

pi

=
∑
i

pi

[
log(

1

pi
)− log(

1

n
)

]
=
∑
i

pi log

(
1/n

pi

)
≤ 0

where we have used Gibb’s inequality in the last step. We have considered P = p1, p2, ..., pn
and Q = 1/n, 1/n, ..., 1/n, i.e. Q is a distribution where each of the n events has the same

probability 1/n. Thus we have, for the function H(P )

0 ≤ H(P ) ≤ log(n)

H(P ) can be zero only when one of the pis is 1 and the rest are zero while it assumes its

maximum value when the distribution is uniform.

Is entropy an appropriate name? In statistical mechanics, the concept of entropy is

introduced to explain macroscopic properties of a system from its microscopic counterpart.

In order to understand the relationship between this entropy and the one introduced by

Shannon, let us look at Boltzmann approach to entropy, which was introduced in the

context of calculation of energy of an assembly of gas. Suppose, we have N number

of particles in a phase space of given volume. Let us divide the phase space into L

number of identical, smaller cells. A microstate of the system is described by a string

a1, a2, ..., aN ,where the particle 1 is in the cell a1, 2 in cell a2 etc. If more than one particle

reside in the same cell, some of the alphabets in the string are repeated. Boltzmann

entropy is given by S = kB lnW , which we will simply write as logW and the constant

can be absorbed by simply changing the base of the logarithm. W is the number of

microstates consistent with a given macrostate.

If there are ni number of particles in the i− th cell, W is given by

W =
N !

n1!n2! . . . nL!

subject to
∑

i ni = N . Taking logarithm of both sides, we get, using Sterling approxima-

tion,

lnW = lnN !−
L∑
i=1

lnni!

= (N lnN −N)−
L∑
i=1

(ni lnni − ni)

= N lnN −
L∑
i=1

ni lnni
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The probability of finding a specific particle in the i − th cell is pi = ni/N . In terms of

this we can write Boltzmann entropy as

lnW = N lnN −
L∑
i=1

Npi ln(Npi)

= N lnN −N

L∑
i=1

pi lnN −N

L∑
i=1

pi ln pi

= −N
L∑
i=1

pi ln pi = N
L∑
i=1

pi ln
1

pi

The average entropy is given by

S

N
=
∑
i

pi ln
1

pi

Let us consider some special distribution.

1. Consider the case where all particles are in a single box i.e. pi = 1 for a particular

box and all other probabilities are zero. Clearly the entropy in this case is zero.

The number of configurations is the same as the number of boxes, viz. L.

2. Consider the case where particles are distributed equally in two specific boxes. The

number of different configurations is found by choosing two boxes out of L (we take

L = 106) and put half of the particles in one of the boxes and the other half in the

second box. This gives

106C2 =
106!

2!(106 − 2)!
=

106(106 − 1)

2
' 1012

2
= 5× 1011

Since the probability of a particle being in either box is 1/2, the entropy of this

configuration is (1/2) ln 2 + (1/2) ln 2 = ln 2. The entropy is somewhat higher than

the case where the particles are all in one single box. The number of configurations

in the single box case is 106 while in the case of two boxes, it is 5× 1011. Thus if we

started with a zero entropy situation (and if these two situations were the only ones

possible) then, the possibility that the entropy becomes ln 2 is
5× 1011

5× 1011 + 106
'

1 − 10−5. This is simply a statement of the fact that the system equlibriate to a

state of maximum entropy.

Communication System

A typical communication system consists of a source which emits signals, an encoder,

which provides a symbolic representation to the message using the bits generated by the

source, a channel for transmission, such as an optical fiber, which on the way may pick
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DecoderSource Encoder
Channel

Noise

Receiver

Figure 5: Schematic representation of a communication system

up stray noise which will attempt to deteriorate the signal, a receiver which will intercept

the message and finally a decoder. A channel?s information capacity is defined as the rate

(say, in Kbps) of user information that can be carried over a noisy channel with as small

error as possible. This is less than the raw channel capacity, which is the capacity in the

absence of any noise. Suppose we wish to code the letters A, C, G, T by a two bit code.

Assume that the letter A appears with 40% frequency, C with 30%, G and T with 15%

each. If we code A=00, C=01, G=10 and T=11, we have on an average 2 bits of code per

letter. However, consider a new scheme where we code A=0, C=10, G=110 and T=111.

The number of bits per letter (on an average) is 0.4× 1 + 0.3× 2 + 0.15× 3 + 0.15× 3 =

1.9 per letter which is a small saving over the previous one, but a saving nevertheless.

The entropy associated with the code (which is the optimal compression possible) is

−
∑

i pi log pi = −0.4 log(0.4)− 0.3 log(0.3)− 0.15 log(0.15)− 0.15 log(0.15) = 1.871. This

does not tell us how to construct codes but gives an idea of the optimal compression.

Shannon’s theorem, which is applicable for all uniquely decipherable codes, provides

a limit for the average length of a code which can be carried with high degree of fidelity

over a noiseless channel. We will prove the theorem for the special case of “prefix code” ,in

which no code word is a prefix for another code word. The following example illustrates

a prefix code.

A=0

B=1

C= 00

D= 11

This is not a uniquely decipherable code. The following is an example of an uniquely

decipherable code but is not a prefix code.
word code comments

A 0

B 01 A is a prefix of B

C 011 B is a prefix of C

D 0111 C is a prefix of D

The following two are valid prefix codes.
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Figure 6: Binary tree to code the word “QUANTUM”

A 00 A 0

B 01 B 10

C 10 C 110

D 11 D 111
A prefix code is best illustrated through a tree diagram which hangs upside down from

a node. From the node we take one step left if the code is 0 and one step right if the code

is 1. When the code terminates at a word (letter), we have a ‘leaf’. Take the following

illustration for coding the word “QUANTUM” with the following prefix coding.
word code

A 0

M 01

N 011

U 0111

Q 100

T 1010
The word “QUANTUM” will then be coded as 100 110 0 1011 1010 110 111 which has

21 bits against 56 bits required to code it by using a byte for every letter. This gives a

compression of 37.5%. The tree is as follows:

If the i-th code word is a leaf at a depth ni, the length of the code word is ni itself. If

nk is the depth of the tree,we have nk ≥ nk?1 ≥ . . . n1. Maximum number of leaves appear

in the tree when the only terminal points of the tree are at level k. If there is a leaf r at

the level i it removes a fraction
1

2nk
of leaves from the level k, leaving 2nk?ni number of

leaves. Thus we have
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k∑
i=1

2nk−ni ≤ 2nk =⇒
k∑

i=1

1

2ni
≤ 1

The last relation is known as the “Kraft Inequality”. If a set of integers n1, n2, . . . , nk

satisfies the Kraft inequality, it is both a necessary and a sufficient condition for the ex-

istence of a prefix code of lengths equal to these set of numbers.

Shannon’s Theorem

Given a source with alphabet {a1, a2, . . . , ak} which occur with probabilities {p1, p2, . . . , pk}
and entropy H(X) = −

∑k
i=1 pi log pi, the average length of a uniquely decipherable code

is

n̄ ≥ H(x), i.e.
∑
i

pini ≥ H

Proof:

H − n̄ = −
∑
i

pi log pi −
∑
i

pini

=
∑
i

pi

(
log

1

pi
− ni

)
=
∑
i

pi

(
log

1

pi
+ log 2−ni

)
=
∑
i

pi log
2−ni

pi

≤
∑
i

pi

(
2−ni

pi
− 1

)
=
∑
i

2−ni − 1 ≤ 0

Example :

There are two coins of which one is a fair coin while the other has heads on both sides.

A coin is selected at random and tossed twice. If the tosses result in two heads, what

information does one get regarding the coin that was selected to begin with? Let X be a

random variable which takes value 0 if the coin chosen is a fair coin and takes value 1 for

the biased coin. Let Y be the number of heads. H(X) is the initial uncertainty regarding

the selected coin (which is a one bit uncertainty). The uncertainty remaining when the

number of heads is revealed is H(X|Y ). The information conveyed about the value of X

by revealing Y is then given by I(X|Y ) = H(X)H(X|Y ). Note that if the value of Y is

zero or 1, there is no uncertainty remaining because the coin must then be a fair coin. If

the coin is fair, the probability that Y = 2 is (1/2) × (1/4) = 1/8. If the coin is biased,

the probability that Y = 2 is (1/2)×1 = 1/2. (In both cases 1/2 is the probability that a

coin is selected). Thus the probability of getting Y = 2 is 1/8 + 1/2 = 5/8. We now need
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to multiply this with the entropy associated with the process. Using Bay’?s theorem, we

have

P (X|Y = 2) =
P (2|X)P (X)

P (2)

Using the above probability, we can see that given that Y = 2, the probability of X =

0 is 1/5 while the corresponding probability for X = 1 is 4/5. We then have

H(X|Y ) =
5

8

(
4

5
log

5

4
+

1

5
log 5

)
= 0.45

Thus the information conveyed about X is 0.55.

Reference:

Robert Ash, ”Information Theory” , Dover Publications, Inc. New York (1965)


