
Quantum Information and Computing

Topic- 12: Quantum Fourier Transform

Dipan Kumar Ghosh

Physics Department,

Indian Institute of Technology Powai, Mumbai 400076

March 19, 2017

1 Introduction

It is well known that prime factorization, i.e., factorisation of a large composite number

to its prime factors is computationally a hard problem requiring exponential time and

memory. Shor’s factorisation uses built in parallelism of a quantum computer to speed

up this process so that the task can be achieved to a high degree of probability in a

polynomial time. The execution of the algorithm requires implementation of a fast Fourier

transform to determine period of a function using a quantum computer. We begin our

discussion with an introduction to a few mathematical tools required for implementing

Shor’s factorisation algorithm. First, we introduce the concept of an integral transform of

a function of a discrete variable. We are familiar with integral transforms, such as, Fourier

transform and Laplace transforms of functions of continuous variables. The primary use

of such transforms is to convert a complicated problem into a relatively simpler one. For

instance, we could, using such technique, convert a differential equation for an unknown

function f into an algebraic equation for the transform f̃ of the function f . Once we have

solved for f̃ , we can apply an inverse transform to get a solution for f itself.

2 Discrete Integral Transforms

In quantum information theory we deal with discrete quantities rather than continuous

ones. Accordingly, we define discrete integral transforms (DIT). They are defined analo-

gously to that of transforms of functions of continuous variables. If n belongs to the set

of natural numbers N and Sn is a set of N = 2n integer {0, 1, 2, . . . , N − 1}, we define

the kernel K(x, y) to be a bivariate function (in general, complex) of discrete variables x

and y (x, y ∈ Sn). The discrete integral transform of a function f of a discrete variable is

1

c©D. K. Ghosh, IIT Bombay 2

defined by

f̃(y) =
N−1∑
y=0

K(x, y)f(y) (1)

Since x and y are discrete, one can think of this as a matrix equation with f (and f̃)

being an N × 1 column vector and K(x, y) an N ×N matrix.

If K is unitary, i.e. if K† = K−1, an inverse transform also exists

f(x) =
N−1∑
y=0

K†(x, y)f̃(y) (2)

Proof of (2) is obvious, as using (1), we can write the rhs of the above as follows:

N−1∑
y=0

K†(x, y)f̃(y) =
N−1∑
y=0

K†(x, y)
N−1∑
z=0

K(y, z)f(z)

=
N−1∑
z=0

(
N−1∑
y=0

K†(x, y)K(y, z)

)
f(z)

=
N−1∑
z=0

δx,zf(z) = f(x)

Till now we have restricted ourselves to a set of numbers. We can extend the formalism

to define a unitary operator in the n− qubit space H = (C2)⊗n.

Let | x〉 =| xn−1, . . . , x1, x0〉 be a basis vector in the n− qubit space where xi ∈ 0, 1. Using

completeness, we have

U | x〉 =
N−1∑
y=0

| y〉〈y | U | x〉

=
N−1∑
y=0

U(y, x) | y〉 (3)

The matrix element U(y, x) is given by

U(y, x) = 〈y | U | x〉

Comparing (3) with (1) we see that if U is a unitary matrix such that

U | x〉 =
N−1∑
y=0

K(x, y) | y〉

then we can say that U computes the discrete integral transform. Moreover, as the process

is quantum in nature U can compute the DIT of functions of all the basis variables

c©D. K. Ghosh, IIT Bombay 3

parallel. This is because, if we define a state
∑N−1

x=0 f(x) | x〉, then the action of U on this

superposition is as follows:

U
N−1∑
x=0

f(x) | x〉 =
N−1∑
x=0

f(x)U | x〉

=
N−1∑
x=0

f(x)
N−1∑
y=0

K(y, x) | y〉

=
N−1∑
y=0

[
N−1∑
x=0

K(y, x)f(x)] | y〉

=
N−1∑
y=0

f̃(y) | y〉

=
N−1∑
x=0

f̃(x) | x〉

where f̃(x) is the DIT of f(x). This shows that U computes the Integral transform of all

the 2n basis states by a single computation. Thus what the unitary operator U does is

to find the transform of the amplitudes of various components of a vector in a standard

basis.

3 Quantum Fourier Transform

We will now consider a particularly important integral transform, viz., the quantum

Fourier transform (QFT) in which the kernel K(x, y) is defined to be

K(x, y) =
1√
N
e2iπxy/N ≡ 1√

N
ωxyn (4)

where

ωn = e2iπ/N

is the N−th root of unity. Note that in the definition (4), x and y are usual numbers

of the decimal system and is not to be confused with a bitwise product. Example of the

kernel for n = 1 and n = 2 are as follows:

n = 1, i.e. N = 2 (x, y ∈ 0, 1), ω1 = −1 K =
1√
2

(
1 1

1 −1

)
Note that this is just the Hadamard transform defined in earlier lectures. Thus QFT in

C2 implements Hadamard transform

n = 2, i.e. N = 4 (x, y ∈ 0, 1, 2, 3), ω1 = eπi/2 = i

c©D. K. Ghosh, IIT Bombay 4

K =
1

2

1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω8

 =
1

2

1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

Thus we have

f̃(x) =
1√
N

N−1∑
y=0

e2iπxy/Nf(y) (5)

f(y) =
1√
N

N−1∑
x=0

e−2iπxy/N f̃(x) (6)

The process of finding QFT is to find the transform of the components of a vector in a

basis. note that K is unitary because

〈x | KK† | y〉 =
N−1∑
z=0

〈x | K | z〉〈z | K† | y〉

=
N−1∑
z=0

K(x, z)K†(z, y)

=
1

N

N−1∑
z=0

e2iπxz/Ne−2iπzy/N

=
1

N

N−1∑
z=0

e2πiz(x−y)/N

If x 6= y, the above is a finite geometric series of N terms having a sum

1

N

e2πiz(x−y) − 1

e2πiz(x−y)/N − 1

whose numerator is zero as e2πi = 1. If x = y, however, each term of the series is 1 and

there are N terms in the series. so that we have 〈x | KK† | y〉 = δx,y.

Example : Find the QFT of | ψ〉 =

√
2

N

∑N−1
x=0 cos

(
2πx

N

)
| x〉, where N = 2n.

Solution:

The QFT is given by

QFT | ψ〉 =

√
2

N

1√
N

1∑
y

∑
x

e−2πixy/N cos(2πx/N) | y〉

=
1√
2N

∑
x

∑
y

[
e−2πi(y+1)x/N + e−2πi(y−1)x/N

]
| y〉

c©D. K. Ghosh, IIT Bombay 5

We perform the sum over x by the formula for the finite geometric series,∑
x

[
e−2πi(y+1)x/N + e−2πi(y−1)x/N

]
=

e−2πi(y+1) − 1

e−2πi(y+1)/N − 1
+

e−2πi(y+1) − 1

e−2πi(y+1)/N − 1

= N(δx,1 + δx,N−1)

where we have used the fact that the numerators of both the terms are zero but the

denominator is not, except when the exponential in the denominator becomes 1, i.e.

when
y + 1

N
= 1, i.e. y = N − 1 in the first term and

y − 1

N
= 1, i.e. y = N + 1 ≡ 1 in

the second term. When this happens, going back to the original sum, we find each term

is 1 and the sum becomes N. Hence

QFT | ψ〉 =
1√
2

[| 1〉+ | N − 1〉]

4 Period Finding:

We will illustrate the process of period finding for a three qubit input. In the Register

1, we have a linear combination of the standard basis, obtained by putting a three qubit

initial state 000. Thus

| Reg1〉 =
1√
8

(| 000〉+ | 001〉+ . . .+ | 111〉) =
1√
8

(| 1〉+ | 2〉+ . . . | 7〉)

The second register contains the state | 000〉. We pass the two registers through oracle

which calculate the function f(x) corresponding to the input x in the first register and

get a state | ψ〉 as the output

| ψ〉 = Uf
1√
8

∑
x

| x〉 | 0〉 =
1√
8

∑
x

| x, f(x)〉

=
1√
8

[| 0, f(0)〉+ | 1, f(1)〉+ . . .+ | 7, f(7)〉]

Thus the coefficient of each vector | x〉 | f(x)〉 is 1/
√

8 but it is zero for | y〉 | f(x)〉 with

y 6= x. We now apply QFT on the first register, leaving the second register as it is

| ψ′〉 = UQFT | ψ〉 =
1

8

∑
x,y

e−2πixy/8 | y, f(x)〉

=
1

8
[| 0〉 (| f(0)〉+ | f(1)〉+ . . .+ | f(7)〉)]

+
1

8

[
| 1〉

(
| f(0)〉+ e−2πi/8 | f(1)〉+ . . .+ e−2πi7/8 | f(7)〉

)]
+ . . .

+
1

8

[
| 1〉

(
| f(0)〉+ e−14πi/8 | f(1)〉+ . . .+ e−14·πi7/8 | f(7)〉

)]

c©D. K. Ghosh, IIT Bombay 6

There are 64 terms in the above expression. Suppose f(x) is periodic with f(x+P) = f(x).

In particular, suppose P = 2, i.e., let

f(0) = f(2) = f(4) = f(6) = a

and

f(1) = f(3) = f(5) = f(7) = b

with a 6= b. We can then rearrange the above expression as follows:

| ψ′〉 = UQFT | ψ〉 =
1

8

∑
x,y

e−2πixy/8 | y, f(x)〉

=
1

8
[| 0〉(4 | a〉+ | b〉)]

+
1

8

[
| 1〉

(
| a〉

(
1 + e−2·2πi/8 + e−4·2πi/8 + e−6·2πi/8

)
+ | b〉

(
e−1·2πi/8 + e−3·2πi/8 + e−5·2πi/8 + e−7·2πi/8

))]
+ . . .

+
1

8

[
| 7〉

(
| a〉

(
1 + e−14·2πi/8 + e−28·2πi/8 + e−42·2πi/8

)
+ | b〉

(
e−7·2πi/8 + e−21·2πi/8 + e−35·2πi/8 + e−49·2πi/8

))]
Consider the coefficients of, say, state | 1〉. We have for the term proportional to | a〉

1 + e−1·2·2πi/8 + e−1·4·2πi/8 + e−1·6·2πi/8

= 1 + e−πi/2 + e−πi + e−3πi/2

= 1 + (−i) + (−1) + (+i) = 0

In a similar way, one can show that the only other non-zero term (apart from the coefficient

of is the | 0〉 term is the term with the state | 4〉, for which, the term proportional to | a〉
is

1 + e−4·2·2·2πi/8 + e−4·4·2πi/8 + e−4·6·2πi/8

= 1 + e−2πi + e−4πi + e−6πi = 4

The state | ψ′〉 works out to

| ψ′〉 =
1

2
[| 0, a〉+ | 0, b〉+ | 4, a〉+ | 4, b〉]

Thus when we measure the register 1, we would get either 0 or 4 if the periodicity is 2.

Periodicity determines the possible result of measurement of the first register.

c©D. K. Ghosh, IIT Bombay 7

5 Unitary Operator for QFT

How does one carry this out? In other words, is there a unitary operation, which acting on

a given sate will create a new state whose expansion in terms of the basis has coefficients

which are Fourier transforms of the coefficients in the expansion of the original state in

the same basis?

Consider a state | ψ〉 =
∑

x αx | x〉. we wish to find U such that

| ψ′〉 = U | ψ〉 = U
∑
x

αx | x〉

=
∑
y

α̃y | y〉

where

α̃y =
1√
N

N−1∑
x=0

ωxyαy

The operator U clearly exists and is given by

U =
N−1∑
y,z=0

e2iπyz/N√
N

| y〉〈z |

because,

U | ψ〉 =
N−1∑
y,z=0

e2iπyz/N√
N

N∑
x=0

α|y〉〈z || x〉

=
N−1∑
y,z=0

e2iπyz/N√
N

αz | y〉

=
N−1∑
y=0

α̃y | y〉

where

α̃y =
1√
N

N−1∑
z=0

e2iπyz/Nαz

Starting with the standard computational basis | x〉, we can now define a new basis

| x̃〉 = U | x〉

which has the following property

| 〈x̃ | y〉 |2 = 〈y | x̃〉〈x̃ | y〉
= 〈y | U | x〉〈x | U † | y〉

=
ωxy√
N
· ω
−xy
√
N

=
1

N

c©D. K. Ghosh, IIT Bombay 8

Thus, | x̃〉 is an equal superposition of all computational basis states as well. However,

this is different from the state obtained by application of the Hadamard transform on a

null vector as unlike in the case of Hadamard transformed state, the coefficients in this

case all complex.

5.1 Implementation

Before constructing a circuit which implements QFT, it is instructive to consider simple

case of n = 1 and n = 2.

Consider n = 1. Let | x〉 be a one qubit state. The Fourier transform is given by

| x̃〉 =
1√
2

∑
y∈0,1

e2iπxy/N | y〉 =
1√
2

(
| 0〉+ e2iπx/2 | 1〉

)
Since x/2 can be written in a binary decimal formal as 0.x, we have

| x̃〉 =
1√
2

=
1√
2

(
| 0〉+ e2iπ(0.x) | 1〉

)
Consider now QFT for n = 2. Let | x〉 =| x1x0〉. We can write x = 2x1 +x0 = x1 ·21 +x0.

Further, in the binary fraction representation, we can write

0.x1x0 = x1 · 2−1 + x02
−2

The QFT of | x〉 is a two qubit state

| x̃〉 =
1

2

∑
y

e2πixy/2
2 | y〉

Remember that xy is a normal product of two numbers x and y (and not bitwise product).

Thus we have

| x̃〉 =
1

2

∑
y0,y1

e2πix(2y1+y0)/2
2 | y〉

=
1

2

∑
y1 ∈ 0, 1e2πixy1/2 | y1〉 ⊗

∑
y0 ∈ 0, 1e2πixy0/2

2 | y0〉

=
1√
2

(
| 0〉+ e2πix/2 | 1〉

)
⊗ 1√

2

(
| 0〉+ e2πix/2

2 | 1〉
)

Since x = 2x1 + x0,
x

2
= x1 +

x0
2

x

22
=
x1
2

+
x0
22

= 0.x1x0. This gives

| x̃〉 =
1√
2

(
| 0〉+ e2πi(0.x0) | 1〉

)
⊗ 1√

2

(
| 0〉+ e2πi(0.x1x0) | 1〉

)
where in the first term we have used e2πix1=1.

c©D. K. Ghosh, IIT Bombay 9

One can easily generalize the above to n− qubit case. Let | j〉 =| jn−1jn−2 . . . j0〉. We

have j = jn−12
n−1 + . . . + j02

0 and 0.jn−1 + . . . + j0 = jn−12
−1 + jn−22

−2 + . . . + j02
−n.

Using these, we can write,

| j̃〉 =
1

2n/2
(
| 0〉+ e2πi(0.j0) | 1〉

) (
| 0〉+ e2πi(0.j1j0) | 1〉

)
. . .⊗

(
| 0〉+ e2πi(0.jn−1jn−2) . . . j0) | 1〉

)
Note that each term in the above can be realized by a Hadamard transform followed

by a rotation, the amount of rotation depends on the value of the other bits. Consider

the m-th term on the rhs of the above product,

| 0〉+ e2πi(0.jmjm−1...j0) | 1〉

If the m− th bit of j is zero, the term becomes

| 0〉+ e2πi(0.0jm−1...j0) | 1〉 =| 0〉+ e2πi(jm−1...j0)/2m | 1〉

On the other hand if the m− th bit is 1, this becomes

| 0〉 − e2πi(jm−1...j0)/2m | 1〉

because e2πi(0.jm) = eπi = −1. The amount of rotation is given by

2π(jm−1 . . . j0)/2
m

Thus the m-th term is given by

| 0〉+ (−1)jme2πi(jm−1...j0)/2m | 1〉 (7)

Returning back to the case of n = 2, we had,

| x̃〉 =
1√
2

(
| 0〉+ e2πi(0.x1) | 1〉

)
⊗ 1√

2

(
| 0〉+ e2πi(0.x1x0) | 1〉

)
Since 0.x1 = x1/2 and 0.x1x0 =

x1
2

+
x0
4

, we get

| x̃〉 =
1√
2

(| 0〉+ (−1)x0 | 1〉)⊗ 1√
2

| 0〉+ (−1)x1e

2πix0
4 | 1〉

The first term is the ordinary Hadamard transform since it gives | 0〉± | 1〉 depending on

whether x0 is 0 or 1. The second term is a little more complicated. This is a Hadamard

transform followed by an amount 2πx0/4, i.e., only if x0 = 1, there is a rotation of the

state | 1〉 by 2π/4. We define a controlled Bjk gate by

Bjk =

(
1 0

0 e2πi/2
k−j+1

)

c©D. K. Ghosh, IIT Bombay 10

Hx
1

x
0 H B

12

Figure 1: QFT for n=2

with k > j, which gives a rotation of the state | 1〉 only if the control bit is 1,

Bjk | x, y〉 = eiθjkxy | x, y〉

= exp[
2πi

2k−j+1xy
] | x, y〉

In the circuit, the first state will be used as a control bit while the second as the target

bit. If x = 0, the action of the gate is identical to application of the identity. However, if

x = 1, the phase acts on | y〉 giving

exp(
2πi

2k−j+1xy
) | x, y〉 =

| y〉 if y = 0

exp[
2πi

2k−j+1
] | y〉 if y = 1

Returning to the case of n = 2,

| x̃〉 =
1

2
[| 0〉+ (−1)x0 | 1〉]⊗ [| 0〉+ (−1)x1e2πix0/4

=
1

2
[| 0〉+ (−1)x0 | 1〉]⊗B0

12[| 0〉+ (−1)x1 | 1〉]

where B0
12 means a rotation by 2π/(22−1+1) = 2π/4 with x0 as the control. The above

state is entangled because the first term has (−1)x0 while the second has (−1)x1 . Note

that our input was | x1x0〉 while the order in which the result appears has a reverse order.

We can write

| x̃〉 =
1

2
[UH | x0〉]⊗B0

12[UH | x1〉]

=
1

2
(UH ⊗ I)B0

12(I ⊗ UH) | x0x1〉

=
1

2
(UH ⊗ I)B0

12(I ⊗ UH)USWAP | x1x0〉

Thus execution of Fourier transform requires swapping of the order of bits before

application of the Hadamard and controlled Bjk gates.

6 QFT for n = 3 qubits

We could directly discuss generalization to n qubits which though straightforward is

clumsy. Instead, we will take the case of three qubits first which will suggest the way to

c©D. K. Ghosh, IIT Bombay 11

generalize the procedure to n qubits by observing a pattern which emerges from discussion

of two and three qubits.

Recalling what we did in the last lecture, the QFT for n=2 case is given by the expression

| x̃〉 =
1√
2

(| 0〉+ (−1)x0 | 1〉)⊗ 1√
2

| 0〉+ (−1)x1e

2πix0
4 | 1〉

We can see that the expression is obtained by applying a Hadamard transform on the

second qubit followed by a Hadamard transform on the first qubit along with a controlled

phase rotation. The phase rotation is controlled because a rotation is there only if x0 = 1.

The point to note in this process is the following. We cannot change the value of the

second qubit before we use its value for the purpose of controlling the operations on the

first qubit. This is achieved by interchanging x1 and x0 and then applying the Hadamard

gate. Thus execution of Fourier transform requires swapping of the order of bits before

application of the Hadamard and controlled Bjk gates.

The QFT for | x〉 =| x2x1x0〉 is given by

| x̃〉 =
1√
8

1∑
y2,y1,y0=0

e2πix(4y2+2y1+y0)/8 | y2y1y0〉

=
1√
2

1∑
y2=0

e2πix(4y2/8) | y2〉 ⊗
1√
2

1∑
y1=0

e2πix(2y1/8) | y1〉 ⊗
1√
2

1∑
y0=0

e2πix(y0/8) | y0〉

Consider the first term in the product and perform the sum over the two values that y2
takes

1√
2

1∑
y2=0

e2πix(4y2/8) | y2〉 =
1√
2

[
| 0〉+ e2πix/2 | 1〉

]
=

1√
2

[
| 0〉+ eπi(4x2+2x1+x0) | 1〉

]
In the last line we have expanded x as 4x2 + 2x1 + x0. It may be observed that since

x2, x1 and x0 take values 0 and 1, the factor in front of the state | 1〉 due tp x2 and x1
is 1 irrespective of the value that these take. However, the multiplying factor is +1 for

x0 = 0 and −1 for x0 = 1, i.e. the factor multiplying | 1〉 is (−1)x0 . This term is simply

implemented by a Hadamard transform of the first qubit. We may similarly simplify the

second and the third terms in the product as follows. The second term is

1√
2

1∑
y1=0

e2πix(2y1/8) | y2〉 =
1√
2

[
| 0〉+ e2πix/4 | 1〉

]
=

1√
2

[
| 0〉+ eπi(2x2+x1+x0/2) | 1〉

]

c©D. K. Ghosh, IIT Bombay 12

Once again, the factor multiplying | 1〉 depends on the value of x1 and x0 because the

factor contributed by x2 is 1 irrespective of the value taken by x2. The second term is

thus given by
1√
2

[
| 0〉+ (−1)x1e2πix0/4 | 1〉

]
Looking at the above, clearly, the way to implement is to have a Hadamard transform

along with a selective phase rotation by an amount 2πx0/4. The rotation is selective in the

sense that the rotation is conditional upon tx0 being equal to 1. This is implemented by a

controlled Bjk gate with x0 as the control. The phase of this gate is given by 2π/(2k−j+1).

Thus the required gate for this qubit is Bx0
01 .

Coming to the third term in the product, one can do a similar expansion and show this

term to be given by

1√
2

[
| 0〉+ e2πi(4x2+2x1+x0)/8 | 1〉

]
=

1√
2

[
| 0〉+ (−1)x2e2πix1/4e2πix0/8 | 1〉

]
What we require here is a Hadamard, a controlled phase rotation using x1 as control

and a phase rotation of 2πx1.4, i.e. a Bx1
12 gate, followed by another controlled phase

rotation Bx0
12 .

Putting the three terms together, the result is

1√
2

[| 0〉+ (−1)x2 | 1〉] 1√
2

[Bx0
01 (| 0〉+ (−1)x1 | 1〉)]⊗ 1√

2
[Bx0

01B
x1
12 (| 0〉+ (−1)x2 | 1〉]

The sequence of operation may be seen to be as follows : (i) A Hadamard gate on the

third qubit. This is important to note as if we apply the Hadamard now, it will alter

the third qubit which then cannot be used with its original value as the control. (ii) A

Hadamard on the second qubit and a controlled Bx0
01 and (ii) a Hadamard on the first

qubit along with two controlled gates Bx0
02B

x1
12 .

What it tells us is that we need to apply the gates in such a manner that the control

bits for the Bjk gates are not changed before such gates are applied. In 3 qubit case it is

achieved by interchanging the first and the third qubits.

Generalization of the above to n− qubit gate is straightforward One can easily

generalize the above to n− qubit case. Let | j〉 =| jn−1jn−2 . . . j0〉. We have j =

jn−12
n−1 + . . . + j02

0 and 0.jn−1 + . . . + j0 = jn−12
−1 + jn−22

−2 + . . . + j02
−n. Using

these, we can write,

| j̃〉 =
1

2n/2
(
| 0〉+ e2πi(0.j0) | 1〉

) (
| 0〉+ e2πi(0.j1j0) | 1〉

)
. . .⊗

(
| 0〉+ e2πi(0.jn−1jn−2) . . . j0) | 1〉

)
Note that each term in the above can be realized by a Hadamard transform followed

by a rotation, the amount of rotation depends on the value of the other bits. Consider

the m-th term on the rhs of the above product,

| 0〉+ e2πi(0.jmjm−1...j0) | 1〉

c©D. K. Ghosh, IIT Bombay 13

01

02

H B

x

x

H

x
0

1

2

P

H B
12

B

Figure 2: QFT for n=3. Here P represents a permutation which reverses the order of the

lines

If the m− th bit of j is zero, the term becomes

| 0〉+ e2πi(0.0jm−1...j0) | 1〉 =| 0〉+ e2πi(jm−1...j0)/2m | 1〉

On the other hand if the m− th bit is 1, this becomes

| 0〉 − e2πi(jm−1...j0)/2m | 1〉

because e2πi(0.jm) = eπi = −1. The amount of rotation is given by

2π(jm−1 . . . j0)/2
m

Thus the m-th term is given by

| 0〉+ (−1)jme2πi(jm−1...j0)/2m | 1〉 (8)

that we had shown that in the m-th term (8) in the general expression was given by

| 0〉+ (−1)jm exp(2πi(jm−1jm−2 . . . j0)/2
m)

The phase term can be written as

exp(2πijm−12
m−1/2m) exp(2πijm−22

m−2/2m) . . . exp(2πij02
0/2m)

Thus a sequence of phase gates act on the state | 1〉 depending on the value of

j0, j1, . . . jm−1. The phase due to the k-th bit is θ = 2π/(2m−k+1). Thus the circuit

for n = 3 would look as in Figure 2.

