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1 Introduction

Earlier, we have discussed the postulates of quantum mechanics. However, under many

situations, we find these axioms to be violated. This happens because most of the time,

the system that we wish to study, is a part of a much larger system. In such a case, it is

found that (i) the states may not be represented by rays in their own Hilbert space, (ii)

measurements may not be orthogonal projections and the evolution may not be unitary.

To illustrate this consider the following two examples:

Consider a two dimensional Hilbert space with basis vectors {| x〉, | y〉}. Suppose we

prepare a large number of such systems, where each of the members is prepared in one of

the two states,

| a〉 = α | x〉+ β | y〉
| b〉 = γ | x〉+ δ | y〉 (1)

where | α |2 + | β |2=| γ |2 + | δ |2= 1. Thus, if we select a system in state | a〉 and make

a measurement in the basis {| x〉, | y〉}, we would get the state | x〉 with a probability

| α |2 and likewise for the result | y〉.
Suppose now, that out of the N systems prepared by us na systems are in the state | a〉
and nb number of the systems are in the state | b〉, such that na + nb = N . If we pick a

random system from this ensemble of N systems, the probability that the selected system

is in the state | a〉 has a probability pa = na/N and the probability it it has the state

| b〉 has a probability nb/N = 1− p. These probabilities are just the classical probability

which works at the ensemble level. However, once the system is selected, the measurement

probabilities are determined by Born interpretation of quantum mechanics. This is an

1
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example of an open system in which we need to modify our rules of quantum mechanise,

as discussed earlier.

Consider a second example. Suppose we call our system of interest as system A which

interacts with its environment, which we call as system B. If the state of the combined

system factorises into a product of a state of system A with that of system B,i.e. if

| ψAB〉 =| ψA〉⊗ | ψB〉

the effect of the environment can be neglected because given any operator OA, which

only acts on the system A but not on B, we have

〈ψAB |OA| ψAB〉 = 〈ψA |OA| ψA〉

In such a situation, the system A is said to be in a pure state. However, if the state of

system of interest is not disentangled from the environment, the effect of the environment

cannot be factored out. The word “environment” need not be a big system, one could

consider a two bit system, with one of the qubits belonging to the Hilbert space HA and

the other (the “environment”) belonging to the Hilbert space HB. Consider a state in the

composite space HA ⊗HB,

| ψ〉 = a | 0〉A⊗ | 0〉B + b | 1〉A⊗ | 1〉B

Note that the qubits A and B are correlated in that when we measure the qubit A, we

would project it to {| 0〉, | 1〉} basis of system A. The probability with which we will find

it is state | 0〉 is | a |2. In this case, the state would collapse to | 0〉A⊗ | 0〉B. Note that

the system B is in a definite state. Same is true of the measurement | 1〉A. The system

A is said to be in a mixed state. In dealing with mixed state (as also with pure state)

a more appropriate formalism is provided by Density Matrix.

2 Density Matrix

Let us look at a general measurement of the system A irrespective of its effect on B. Such

a measurement operator is MA ⊗ IB. We then have,

AB〈ψ |MA ⊗ IB| ψ〉AB = [a∗ A〈0 | ⊗ B〈0 |+ b∗ A〈1 | ⊗ B〈1 |(MA ⊗ IB)[a | 0〉A⊗ | 0〉B + b | 1〉A⊗ | 1〉B
=| a |2 A〈0 |MA| 0〉A+ | b |2 A〈1 |MA| 1〉A
= 〈MA〉 = tr(MAρA) (2)

where the operator ρA is the density operator or the density matrix,

ρA =| a |2| 0〉A A〈0 |+ | b |
2| 1〉B B〈1 |

and the operator MA acts on qubit A only. We can interpret ρA as an ensemble of

possible quantum states each of which occur with a specified probability, P0 =| a |2, Pa =|
b |2. Thus, in the above, we have talked about two distinct type of states:
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1. A coherent superposition of states | 0〉A and | 1〉A

2. a probabilistic superposition in which the states | 0〉 and | 1〉 occur with a predeter-

mined and specified probability.

To see the distinction consider measurement of σx in these two types of states. Consider a

coherent superposition
1√
2

(| 0〉+ | 1〉). The expectation value of σx in this state is given

by

〈σx〉 =
1

2
(〈0 | +〈1 |)X (| 0〉+ | 1〉)

=
1

2
(〈0 | +〈1 |) [| 0〉〈1 | + | 1〉〈0 |] (| 0〉+ | 1〉)

=
1

2
(〈0 | +〈1 |) (〈1 | +〈0 |)

= 1

On the other hand, if we consider an ensemble in which the state | 0〉 and | 1〉 occur

with a probability of 1/2 each, we get 〈σx〉 =
1

2
(〈α |X| α〉+ 〈β |X| α〉) = 0. In this case

the density matrix is

ρ =
1

2
(| α〉〈α | + | β〉〈β |) =

I

2

so that

〈σx〉 = tr(σxρ) =
1

2
tr(σx) = 0

Thus the density operator is an average operator which allows us to describe a system

which is not necessarily in a pure state but may be a statistical mixture of pure states. we

first start with the case where the system is in a pure state. Let {| ei〉} be a basis in the

Hilbert space of the system in terms of which the state | ψ〉 is given by | ψ〉 =
∑

i ci | ei〉.
Note that this is not a mixture but is a pure state. The expectation value of an operator

Â in this state is given by

〈A〉 = 〈ψ |Â| ψ〉 =
∑
i,j

c∗i cjAi,j

where Ai,j = 〈ei |Â| ej〉, cj = 〈ej |ψ〉 and c∗i = 〈ψ |ei〉. We have

c∗i cj = 〈ψ |ei〉〈ej |ψ〉
= 〈ej |ψ〉〈ψ |ei〉
= 〈ej |(| ψ〉〈ψ |)| ei〉
= 〈ej |ρ̂| ei〉

where

ρ̂ =| ψ〉〈ψ | (3)
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is the density matrix for the pure state, which is just the projection operator for the state

| ψ〉. In terms of the density matrix, the expectation value of Â can be written as

〈Â〉 =
∑
i,j

〈ej |ρ̂| ei〉Ai,j

. We can rewrite the above expectation value as follows:

〈Â〉 =
∑
i,j

〈ej |ψ〉〈ψ |ei〉〈ei |Â| ej〉

=
∑
i,j

〈ej |ρ̂| ei〉〈ei |Â| ej〉

=
∑
j

〈ej |ρ̂Â| ej〉

= tr ρ̂Â (4)

In the last but one step, we have used the completeness relation to perform the sum over

i. Note that the trace of ρ̂ itself can be calculated as follows, since trace can be calculated

in any basis,

tr ρ =
∑
i

〈ei |ρ̂| ei〉 =
∑
i

〈ei |ψ〉〈ψ |ei〉

=
∑
i

c∗i ci =
∑
i

| ci |2= 1

Example:

A system is in the state | ψ〉 =
1√
3
| e1〉+ i

√
2

3
| e2〉. Determine the density operator and

find its trace.

Solution:

ρ̂ =| ψ〉〈ψ |

=

(
1√
3
| e1〉+ i

√
2

3
| e2〉

)(
1√
3
〈e1 | −i

√
2

3
〈e2 |

)

=
1

3
| ei〉〈e1 | +

2

3
| e2〉〈e2 | −

i

3

√
2 | e1〉〈e2 | +i

√
2

3
| e2〉〈e1 |

The trace is easy to calculate

tr ρ̂ = 〈e1 |ρ̂| e2〉+ 〈e2 |ρ̂| e2〉 =
1

3
+

2

3
= 1

How does the density operator evolve with time? As the state | ψ〉 satisfies the

Schrödinger equation, we have

i~
d

dt
| ψ〉 = H | ψ〉 (5a)

−i~ d
dt
〈ψ | = 〈ψ | H (5b)
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We thus have

i~ | ψ〉〈ψ | =
(
i~
d

dt
| ψ〉

)
〈ψ | + | ψ〉

(
i~
d

dt
〈ψ |

)
= H | ψ〉〈ψ | − | ψ〉〈ψ | H
= [H, ρ]

where we have use (??) and (??). Thus the density matrix satisfies Liouville equation,

i~
d

dt
ρ̂ = [H, ρ̂] (6)

Note that though ρ is an operator, it does not satisfy the quantum mechanical Heisen-

berg equation of motion. This is because the density operator does not represent any

observable and simply has the mathematical structure of an operator.

The density operator is clearly hermitian as ρ† =| ψ〉〈ψ |. Further,

ρ2 = (| ψ〉〈ψ |) (| ψ〉〈ψ |) =| ψ〉Î〈ψ |= ρ

This is true of pure states only, for which we have,

tr ρ2 = tr ρ = 1

Not also that ρ is a positive operator, because for an arbitrary state | φ〉, we have

〈φ |ρ| φ〉 = 〈φ |ψ〉〈ψ |φ〉 =| 〈φ |ψ〉 |2

Since ρ is self adjoint (hence normal) we can use a spectral decomposition for the operator

ρ =
∑
n

λn | n〉〈n |

As ρ is a positive operator, the eigenvalues are nonnegative. This along with tr ρ = 1

gives
∑

n λn = 1,

3 Mixed State Density Matrix

If instead of a pure state, we have an ensemble in which systems could be in various states

| ψ〉 with classical probability pi, we define the density operator by the relation

ρ =
∑
i

piρi =
∑
i

pi | ψi〉〈ψi | (7)

The states | ψi〉 s need not be orthogonal.The properties of the density operator are as

follows:
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(i) ρ† = ρ

(ii) ρ is a positive operator

(iii) tr(ρ) = 1

(iv) 〈A〉 = tr(ρA)

(v) It satisfies Liouville equation i~
d

dt
ρ = [H, ρ]

3.1 Density Matrix and Bloch Sphere

Consider the density matrix corresponding to spin 1/2. Recall that a point on the Bloch

sphere is associated with the state of a qubit. Naturally, for every point on the Bloch

sphere, we can associate a density matrix as well. One can see it directly by considering

the eigenstates of σn, where the unit vector n̂ has coordinates (sin θ cosϕ, sin θ sinϕ, cos θ).

The eigenstates are given by

| ψ〉 =

 cos
θ

2

eiϕ sin
θ

2


The corresponding density matrix can be calculated using ρ =| ψ〉〈ψ |, so that

ρ =| ψ〉〈ψ |

=

 cos2
θ

2
e−iϕ sin

θ

2
cos

θ

2

eiϕ sin
θ

2
cos

θ

2
sin2 θ


=

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
=

1

2
I +

1

2
sin θ cosϕ

(
0 1

1 0

)
+

1

2
sin θ sinϕ

(
0 −i
i 0

)
+

1

2
cos θ

(
1 0

0 −1

)
=

1

2
(1 + n̂ · ~σ)

It is possible to associate a density matrix for the mixed state with the Bloch sphere,

only that such points lie inside the sphere and not on it as is the case for the pure states.

Since any 2 × 2 matrix can be written in terms of a unit matrix and the three Pauli

matrices σx, σy and σz , we can write

ρ =
1

2
(1 + ~a · ~σ)
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Since tr(σi) = 0 and tr(I) = 2 for a 2× 2 identity matrix, we have tr(ρ) = 1. the vector

~a is called the Bloch vector. Note that

σx = tr(σxρ)

=
1

2
tr (σx(1 + axσx + ayσy + azσz))

=
ax
2

tr(σ2
x)

=
ax
2
× 2 = ax

In the above we have used the properties of the Pauli matrices such as σxσy = iσz, σ
2
i = I

and the fact that the trace of σi is zero. The above result shows that ax, ay and az are

respectively the expectation values of σx, σy and σz. Let us calculate the trace of ρ2. We

have,

tr(ρ2) = tr[
1

4
(I + ~a · σ)2]

=
1

4
tr[I2 + a2xσ

2
x + a2yσ

2
y + a2zσ

2
z + 2axσx + 2ayσy + 2a− zσz]

=
1

2
[1 + a2x + a2y + a2z]

=
1+ | a |2

2

In the above, we have used tr(σi) = 0 and tr(σ2
i ) ≡ tr(I) = 2. Thus for mixed states, we

require the distance from the centre | a | to be less than 1 and hence they lie inside the

Bloch sphere.

What is the difference between a pure state | ψ〉 =
1

2
(| 0〉+ | 1〉) and a system which is

a statistical mixture of 50% in | 0〉 and another 50% in | 1〉 state? For the pure state,

the state | ψ〉 is on the Bloch sphere with θ = π/2, ϕ = 0, because the state has a matrix

representation

ψ(
π

2
, 0) =

 cos(
π

4
)

ei×0 sin(
π

4
)

 =
1√
2

(| 0〉+ | 1〉)

If we rotate this state on the Bloch sphere by −π/2 about the y-axis, the state would go

to the north pole, i.e. to the state | 0〉. On measurement, we would get the state | 0〉
with unit probability. Consider now what would happen if we had a mixture given above.

Rotating the Bloch sphere by −π/2 about the y-axis would take | 0〉 to the equator, to

the state
1√
2

(| 0〉− | 1〉). Similarly the state | 1〉 would go to
1

2
(| 0〉+ | 1〉). Hence we

would, on measurement, get the state | 0〉 with 50% probability and the state | 1〉 with

50% probability, the same as was the case before rotation. The mixed state lies at the

origin of the Bloch sphere and hence does not change on rotation described above.
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Does density matrix uniquely represent a physical system? For a mixed system, the

answer is no. Consider the 50-50 mixture given above. The density matrix is

ρ =
1

2
(| 0〉〈0 | + | 1〉〈1 |) =

I

2

Consider a different mixture consisting of 50% in the state | +〉 =
1

2
(| 0〉+ | 1〉) and

another 50% in the state | −〉 =
1

2
(| 0〉− | 1〉). The density matrix works out to be same

as in the previous case!

The elements of the density matrix are interpreted as follows. If a system is described

by a density matrix ρ, the probability of of finding it in a state | ψ〉 is given by 〈Pψ〉,
where Pψ =| ψ〉〈ψ | is the projection operator for the state | ψ〉. Consider a pure

state | ψ〉 = a | 0〉 + b | 1〉. The probability of finding this state in the state | 0〉 is

〈ψ |P0| ψ〉 =| a |2. For an arbitrary state described by a density matrix,

P0 = tr(P0ρ)

= tr

[(
1 0

0 0

)(
ρ00 ρ01
ρ10 ρ11

)]
= tr

(
ρ00 ρ01
0 0

)
= ρ00 =

1 + az
2

Likewise, the probability to find it in state | 1〉 is given by

P1 = ρ11 =
1− az

2

The probability of find the system in a certain state is given by the diagonal element of

the density matrix. The off-diagonal elements give the coherence between the states.

Note that for a pure state ρ2 = ρ. Using the spectral theorem, ρ =
∑

i λi | λi〉〈λi | in

which case ρ2 =
∑

i λ
2
i | λi〉〈λi |. Since ρ2 = ρ we have λ2i = λi, so that λi = 0 or 1 (ρ

being Hermitian λi are real). Since tr(ρ) = 1 we have λp = 1 for some i = p and is zero for

i 6= p. For a mixed state, however, let us write ρ = piρi with ρi being a pure state density

matrix, we have ρ2 =
∑

i,j pipjρiρj. The trace of ρ is still 1 as (trace can be calculated in

any basis)

tr(ρ) =
∑
j

∑
i

pi〈ej |ψi〉〈ψi |ej〉

=
∑
i,j

pi〈ψi |ej〉〈ej |ψi〉

=
∑
i

pi〈ψi |ψi〉 =
∑
i

pi = 1
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where, in the last but one step we have used the completeness relation. However, for a

mixed state the trace of ρ2 is always less than one, as can be seen in the following:

tr(ρ2) =
∑
k

∑
i,j

pipj〈ek |ρiρj| ek〉

=
∑
i,j,k

pipj〈ek |ψi〉〈ψi |ψj〉〈ψj |ek〉

=
∑
i,k

p2i 〈ψi |ek〉〈ek |ψi〉

=
∑
i

p2i ≤ 1

where the equality is applicable only when one of the pis is equal to one and the others

zero, i.e. a pure state. Thus for mixed states tr(ρ2) ≤ tr(ρ).

4 Postulates of Quantum Mechanics - in Density Ma-

trix Language

We have seen that the advantage of the density matrix formulation over the state vector

description lies in the former’s ability to provide a description of open systems. This

is because our system of interest is usually a sub-system which interacts with the envi-

ronment. In such situations, it is not possible to associate a ray with the system under

investigation. The density matrix, on the other hand, can take care of both open systems

or closed systems. It is therefore, necessary to reformulate the quantum postulates in

terms of the density matrix.

1. A quantum system is completely described by a density operator (matrix) ρ which

is a positive operator with unit trace, which acts on the state space of the

system.

2. A closed system evolves unitarily,

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0)

3. Outcome of a measurement is probabilistic, the only possible outcomes are eigen-

values λm of the operator representing the observable and the probability of this

measurement is given by

P (m) = 〈φm |ρ| φm〉

where | φm〉 is the eigenstate corresponding to the eigenvalue λm. Note that in case

of a pure system, this boils down to the Born postulate, since

P (m) = tr (〈φm |ψ〉〈ψ |φ〉) =| 〈φm |ψ〉 |2
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For a mixed state with ρ =
∑

i pi | ψ〉〈ψi |, we obviously can generalise this to

P (m) =
∑
i

pi | 〈φm |ψ〉 |2=
∑
i

pi〈φm |ψi〉〈ψi |φm〉 = 〈φm |ρ| φm〉

However, the last expression is equal to tr(ρ | φm〉〈φm |≡ tr(ρPm), where Pm =|
φm〉φm is the projection operator for the eigenstate | φm〉. Later, we will rewrite

this postulate in terms of the measurement operators.

4. The post measurement state of the system is given by

ρ(λm) =
1

p(λm)
| φm〉〈φm | 〈φm |ρ| φm〉〈φm | (8)

Note that as per the state postulate, the post measurement state is given by

Pm | ψ〉√
〈ψ |P 2

m| ψ〉
=

Pm | ψ〉
[〈ψ |Pm| ψ〉]1/2

=
Pm | ψ〉√

pm

Clearly, the density matrix corresponding to the above is given by (??).

5 Reduced Density Matrix

As we have mentioned earlier, frequently, our system of interest A is a part of a larger

system with which it interacts. The quantum coo relations that exist within our system

of interest would decohere as a result of interaction with the environment. If the entire

system (A+ the environment, which we label as B). is described by a density matrix,

the properties of A is obtained by taking partial trace (i.e. averaging) over the trace of

the environment. We will illustrate the basic concept of the reduced density matrix by

considering A to be a one bit system and B also to be a one bit system. Since we would

like to make our measurements only on the system A, it is of interest to see, how things

change if we were to make a measurement on the composite system (A+B) described by

a single density matrix ρAB. We define the reduced density matrix for the system A

by

ρA = trB(ρAB)

where trB is the partial trace over B, defined by

tr (| a1〉〈a2 | ⊗ | b1〉〈b2 |) =| a1〉〈a2 | tr(| b1〉〈b2 |)

where {b1, b2} are the (pure) states of B. Now,

tr | b1〉〈b2 |=
∑
i

〈i |b1〉〈b2 |i〉 = 〈b2 |b1〉

We will see that the reduced density matrix provides proper measurement statistic for

the system A. Why do we need partial trace in dealing with composite system?



c©D. K. Ghosh, IIT Bombay 11

Let M be an observable on system A while M̃be the same measurement done on system

AB. We need to show that M̃ = M ⊗ IB. Let our composite system is prepared in the

state | m〉⊗ | ψ〉, where | m〉 is an eigenstate of A and | ψ〉 is an arbitrary state of B.

Suppose we perform a measurement on the composite system. If Pm is the projector for

| m〉 on the eigenspace of M , the projector for M̃ s Pm ⊗ IB. Hence

M̃ =
∑
m

mPm ⊗ IB = M × IB

We should get the same result whether we calculate the result of measurement through

ρA or ρAB, we must have

tr(ρAM) = tr(ρABM̃) = tr ((M ⊗ IB)ρAB)

One can see that if we take ρA = trB(ρAB), above equation is satisfied.

Example 1:

Let ρAB = ρ⊗ σ where ρ is the density operator for A and σ for B. We can see that

ρA = trB(ρ⊗ σ) = ρ tr(σ) = ρ

(as tr(σ) = 1. Likewise, we can show that ρB = trA(ρAB)).

Example 2:

Consider the density matrix corresponding to the Bell state
| 00〉+ | 11〉√

2
which is a two

qubit entangled state.

ρ =
1

2
(| 00〉〈00 | + | 11〉〈00 | + | 00〉 | 11〉+ | 11〉〈11 |)

Let us trace over the second qubit

ρ1 = tr2 ρ

= 2〈0 |ρ| 0〉2 + 2〈1 |ρ| 1〉2

=
1

2
[(| 0〉〈0 | [〈0 |0〉〈0 |0〉+ 〈1 |0〉〈0 |1〉]+ | 1〉〈0 | [〈0 |1〉〈0 |0〉+ 〈1 |1〉〈0 |1〉]

+ | 0〉〈1 | [〈0 |0〉〈1 |0〉+ 〈1 |0〉〈1 |1〉]+ | 1〉〈1 | [〈0 |1〉〈1 |0〉+ 〈1 |1〉〈1 |1〉]])

=
1

2
[| 0〉〈0 | + | 1〉〈1 |] =

I

2

Note that tr ρ1 = 1 but tr(ρ21) = tr(I2/4) = 1/2, i.e. it is a mixed state!. It may be

noted that the original two qubit state is a pure state but the reduced density matrix

corresponds to a mixed state. This is a consequence of quantum entanglement.
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6 Schmidt Decomposition and Schmidt Number

An arbitrary vector in the composite space HA⊗HB can obviously be expressed in terms

of an orthonormal basis {| φAi 〉} for HA and an orthonormal basis {| φBµ 〉} for HB,

| ψ〉 =
∑
i,µ

Ci,µ | φBi 〉⊗ | φBµ 〉

The coefficients Ci,µ are, in general, complex and has the form
√
pi,µe

iϕiµ . If HA has the

dimension m and HB has dimension n, the composite system has dimension mn.

The Schmidt decomposition tells us that we can always find a pair of basis {| φ̃Ai 〉} and

{| φ̃Bi 〉} such that all the cross terms in the expansion of | ψ〉 vanish and we have

| ψ〉 =
∑
i

√
pi | φ̃Ai 〉⊗ | φ̃Bi 〉

such that all coefficients
√
pi are real and the dimension of the space is min(m,n).

Example:

Express | ψ〉 =
1

2
(| 00〉+ | 01〉+ | 10〉+ | 11〉) in Schmidt basis.

Note that the computational basis for HA and HB are not Schmidt basis because of

presence of cross terms like | 01〉 and | 10〉. However, if we choose

| φ̃A0 〉 =
1√
2

(| 0〉+ | 1〉); | φ̃A1 〉 =
1√
2

(| 0〉− | 1〉)

| φ̃B0 〉 =
1√
2

(| 0〉+ | 1〉); | φ̃B1 〉 =
1√
2

(| 0〉− | 1〉)

We can write | ψ〉 =| φ̃A0 〉⊗ | φ̃B0 〉, which does not have any cross term.

Define | φ̃Bi 〉 =
∑

µCi,µ | φBµ 〉 so that | ψ〉 =
∑

i | φAi 〉⊗ | φ̃Bi 〉. Note that the set

{| φ̃Bi 〉} may be neither normalised nor orthogonal. However, we could, without loss of

generalty choose the basis {| φAi 〉} such that ρA is orthogonal in this basis. Thus

ρA =
∑
i

pi | φAi 〉〈φAi | (9)

However, we can calculate ρA as a reduced density matrix from the expression for the

density matrix of the composite system.

ρA = trB ρAB

= trB(| ψ〉AB AB〈ψ |)

= trB

[∑
i,j

(
| φAi 〉⊗ | φ̃Bi 〉

)(
〈φAj | ⊗〈φ̃Bj |

)]
=
∑
i,j

(| φAi 〉〈φAj |) tr((| φ̃Bi 〉〈φ̃Bj |)

=
∑
i,j

(| φAi 〉〈φAj |)〈φ̃Bj |φ̃Bi 〉 (10)
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where we have used tr((| φ̃Bi 〉〈φ̃Bj |) = 〈φ̃Bj |φ̃Bi 〉 . However, we have also obtained (??) for

ρA. Thus, on comparing (??) and (??), we get∑
i

pi | φAi 〉〈φAi |=
∑
i,j

(| φAi 〉〈φAj |)〈φ̃Bj |φ̃Bi 〉

This shows that 〈φ̃Bj |φ̃Bi 〉 = piδi,j, i.e., the new basis is orthogonal. Assuming π 6= 0, we

can normalise it so that

| φ̃Bi 〉 →
1
√
pi
| φ̃Bi 〉

Thus

| ψ〉AB =
∑
i

√
pi | φ〉A⊗ | φ̃Bi 〉

We can take partial trace over A to get ρB

ρB = trA(| ψAB〉〈ψAB |)

= trA

(∑
i,j

√
pipj | φAi 〉〈φAj | ⊗ | φ̃Bi 〉〈φ̃Bj |

)
=
∑
i

pi | φ̃Bi 〉〈φ̃Bi |

which shows that ρA and ρB have the same non-zero eigenvalues. This does not imply

that HA and HB have the same dimension as the number of zero eigenvalues may differ.

The number of non-zero eigenvalues of ρA and ρB is known as the Schmidt Number. If

a state is separable, the Schmidt number is 1.

Example 1:

Let | ψ〉 =
| 01〉− | 10〉√

2
. Is this state separable?

ρ =| ψ〉〈ψ |= 1

2
[| 01〉〈01 | − | 01〉〈10 | − | 10〉〈01 | + | 10〉〈10 |]

Taking partial trace, we get ρA = trB ρ =
1

2
I which has two eigenvalues λ1 = λ2 =

1

2
.

Since there are two non-zero eigenvalues, the state is not separable and is entangled.

Example 2:

Check the separability of the state

| ψ〉 =
1

2
| 00〉+

1

2
| 01〉+

i

2
| 20〉+

i

2
| 21〉

where | 0〉, | 1〉 and | 2〉 constitute an orthonormal set in HA and | 0〉 and | 1〉 form a set

on HB.
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It is easy to check that taking partial trace over B, gives us ρA to be

ρA = trB ρ =
1

2
| 0〉〈0 | +1

2
| 2〉〈2 | − i

2
| 0〉〈2 | + i

2
| 2〉〈0 |

=

1

2
− i

2
i

2

1

2


which has eigenvalues 1 or 0. The non-zero eigenvalue is only 1. Hence the state is

separable. One can directly check that

| ψ〉 = (
| 0〉+ i | 2〉√

2
)⊗ (

| 0〉+ | 1〉√
2

)

7 Purification

We have seen that taking partial trace of a pure state gives us a mixed state. Is the

converse true? Is it possible to to find a pure state density matrix, whose partial trace

yields a given mixed state density matrix? The answer is yes. The process is called

purification.

Let ρa =
∑

k pk | ψk〉〈ψk | be a density matrix of A in the Hilbert space HA. Introduce a

second Hilbert space HB which has the same dimension as that of HA. Define

| ψ〉 =
∑
k

√
pk | ψk〉⊗ | φk〉

where {| φk〉} is an orthonormal basis in HB. Now,

trB | ψ〉〈ψ | = trB
∑
k,l

√
pkpl | ψk〉A A〈ψl |⊗ | φk〉B B〈φl |

=
∑
k,l

√
pkpl | ψk〉A A〈ψl |〈φk |φm〉

=
∑
k,l

√
pkpl | ψk〉A A〈ψl |δk,l

=
∑
k

pk | ψk〉A A=ρA

Example:

Let ρA =
1

4
(| 0〉〈0 | +3 | 1〉〈1 |). Find a purification.

Now,

ρA =
1

4

(
1 0

0 3

)
Let | 0〉 and | 1〉 be a basis for B. Define

| ψ〉 =
1

2
| 0〉A× | 0〉B +

√
3

2
| 1〉A⊗ | 1〉B
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The tensor product matrix can be seen to be

| ψ〉 =
1

2

(
1

0

)(
1

0

)
+

√
3

2

(
0

1

)(
0

1

)
=

1

2

(
1 0

0 0

)
+

√
3

2

(
0 0

0 1

)
=

1

2

(
1 0

0
√

3

)
Thus

| ψ〉〈ψ | = 1

4

(
1 0

0
√

3

)(
1 0

0
√

3

)

=
1

4


1 0 0 0

0
√

3 0 0

0 0
√

3 0

0 0 0 3




