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1 Introduction

In the last lecture we introduced the concept of information. We discussed a method

of quantifying information and found that unlike the colloquial usage of the term ‘in-

ormation’, the word in technical terms implies a measure of the uncertainty in a given

statement or a given situation. It was pointed out that when an event actually takes place

out of various possibilities that could arise before the event, the amount of uncertainty

that gets removed is a measure of the information associated with that event. We defined

a function H(p1, p2, ...pM) as a measure of such information where there are M possi-

bilities associated with that event with probabilities p1, p2, ...pM corresponding to these

events. We also defined an auxiliary function f(M) as equal to H where probability of

each of the M events are identical. We found that f(M) must satisfy certain properties,

which are as follows:

1. f(M) = H(
1

M
,

1

M
, . . . ,

1

M
) is a non-negative, monotonic and continuously increas-

ing function of M .

2. f(1) = 0, This is because, if an event is certain then there is no uncertainty.

3. f(MN) = f(M) + f(N)

4. The grouping theorem as discussed in the previous lecture is satisfied.

In the following we will find the explicit form of a function which satisfies the above.

We will now find a function which satisfies the above. which satisfies the four properties

mentioned above.
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2 Information Measure

We claim that the function f(M) = C logM where C > 0 is the function which satisfies

the four properties mentioned above.

1. f(M2) = f(M ×M) = f(M) +f(M) = 2f(M). In a similar way one can show that

f(Mk) = kf(M). We also have,

f(M) = f((M1/n)n) = nf(M1/n)

which gives f(M1/n) =
1

n
f(M) and also f(M l/n) = lf(M). By continuity, it then

follows that for any real number a, f(Ma) = af(M). This is obviously satisfied by

C logM .

2. f(1) = f(1 × 1) = f(1) + f(1) = 2f(1) so that f(1) = 0. Since log 1 = 0, this

property is satisfied.

3. Let M > 1. Let r be an arbitrary positive integer. For any integral M , we can then

find an integer k such that Mk ≤ 2r ≤ Mk+1. (Example, let M = 4 and r = 3,

then 2r = 8 which lies between 4 = 41 and 16 = 42, so that k = 1. Since f(M) is a

monotonic function of M , it then follows that

f(Mk) ≤ f(2r) ≤ f(Mk+1)

kf(M) ≤ rf(2) ≤ (k + 1)f(M)

k

r
≤ f(2)

f(M)
≤ k + 1

r

Consider now the function C logM . Since

logMk ≤ log 2r ≤ logMk+1,

we have
k

r
≤ log 2

logM
≤ k + 1

r

Thus both f(2)/f(M) and log 2/ logM lie between k/r and (k+1)/r. Clearly, the distance

between them on the real line must be less than 1/r. Since r is arbitrary, we can make it

indefinitely large and in this limit

log 2

logM
=

f(2)

f(M)

which shows that

f(M) = C logM
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where C = f(2)/f(M) > 0.

Finally, we need to prove that this form satisfies the grouping theorem. We have from

grouping theorem

H(p1, p2, . . . , pM)−H

(
r∑

i=1

pi,

M∑
i=r+1

pi

)
=

r∑
i=1

pi ×H

(
p1∑r
i=1 pi

,
p2∑r
i=1 pi

, . . .
pr∑r
i=1 pi

)

+
M∑

i=r+1

pi ×H

(
pr+1∑r
i=1 pi

,
pr+2∑M

i=r+1 pr+1

, . . .
pr∑M

i=r+1 pi

)
Consider a total of s events each having the same probability and r of them in group

A and s?r of them in group B. We can then write, using pi = 1/s for each of the events,

H

(
1

s
,
1

s
, . . .

1

s

)
−H

(
r

s
,
s− r

s

)
=

r

s
H

(
1

r
,
1

r
, . . .

1

r

)
+

s− r

s
H

(
1

s− r
,

1

s− r
, . . .

1

s− r

)
where, in the above expression there are r arguments of H in the first term to the

right and s− r arguments in the second term. Using the definition of f(m), this gives

f(s) = H

(
r

s
,
s− r

s

)
+

r

s
f(r) +

s− r

s
f(s− r)

Substituting f(M) = C log(M),

C log s = H(p, 1−−p) + cp log r + c(1− p) log(s− r)

which gives

H(p, 1− p) = −C [p log r + (1− p) log(s− r)− log s]

= −C [p log r − p log s + p log s− log s + (1− p) log(s− r)]

= −C
[
p log

r

s
− (1− p) log s + (1− p) log(s− r)

]
= −C[p log p + (1− p) log(1− p)]

We generalize the above to more than two events and assert that

H({pi}) = −C
M∑
i=1

pi log pi

In the above we have proved this for M = 1 and for M = 2. We can use the method of

induction to prove that if the theorem is valid for M−1, it would be true for M . Dividing

M events into two groups, one containing a single event and the other M − 1 events, we

have,
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Figure 1: Variation of uncertainty with probability for two events

H(p1, p2, . . . , pM−1, pM) = H(p1 + p2 + . . . + pM−1, pM) + (p1 + p2 + . . . + pM−1)

×H

(
p1∑M−1

i=1 pi
+

p2∑M−1
i=1 pi

+ . . .
pM−1∑M−1
i=1 pi

)
+ pMH(1)

= −C[(p1 + p2 + . . . + pM−1) log(p1 + p2 + . . . + pM−1) + pM log pM ]

− (
M−1∑
i=1

pi)C

[
M−1∑
i=1

pi∑M−1
j=1 pj

log

(
pi∑M−1

j=1 pj

)]
+ pM × 0

= −C

[
M−1∑
i=1

pi log(
M−1∑
i=1

pi) + pM log pM

]
− C

[
(
M−1∑
i=1

pi) log pi − (
M−1∑
i−1

pi) log(
M−1∑
i=1

pi)

]

= C
M∑
i=1

pi log pi

We will take C = 1 and the base of the logarithm to be 2. The above shows that the

uncertainty associated with an event does not depend on the values that X takes but on

the probability of occurrence of the events. Consider tossing of a coin. According to what

we have shown above, since the head and the tail occur with a probability 1/2 each, the

uncertainty associated with a coin toss is

H(
1

2
,
1

2
) = −

∑
i

pi log2 pi = −1

2
log2(1/2)− (1− 1

2
) log2(1−

1

2
) = 1

The uncertainty has its maximum value (1 bit) at phead = ptail = 1/2. If the coin is

biased, the uncertainty decreases because we become more certain on which way the coin

is likely to face (Figure 2).

There are several interpretation of the concept of uncertainty measure.

1. The relation H({pi}) = −
∑

i pi log2 pi is the weighted average of probabilities of

occurrence of various values of a random variable W (X) which assumes the value
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(three questions)

Is it either x1 or x2 ?

Yes

Is it x1 ?

Is it x3 ?

Yes

No

Yes

No

x1 (two questions)

x2 (two questions)

x3 (two questions)

(three questions)x5

Is it x4 ?

Yes

No

No

x4

Figure 2: A Decision tree for the number of questions.

− log2 pi when the random variable X takes the value xi, i.e. W takes the value

equal to the negative logarithm of the probability of X = xi

Example : Suppose X takes five values x1, x2, x3, x4 and x5 with probabilities 0.3,

0.2, 0.2, 0.15 and 0.15 respectively. W takes values log2(0.3) = 1.736, log2(0.2) =

2.322, 2.322,− log2(0.15) = 2.737 and 2.737 respectively with the corresponding

probabilities. Adding the contributions, we get H = 2.27 bits of uncertainty.

2. Another interpretation is to regard the uncertainty as the minimum of the number

questions(having answer in the form of yes or no) per event that can be asked to

reveal the result (i.e. remove the uncertainty). Taking the same example as above,

we can look at the decision tree (Figure 3).

the average number of questions that one needs to ask as per the decision tree above

is 2× (0.3 + 0.3 + 0.2) + 3× (0.15 + 0.15) = 2.3 which is greater than the minimum

number 2.27 stated above.

Flipping a coin once gives 1 bit of information. Flipping a coin n times (which is the

same as flipping n coins simultaneously) gives n bit of information, because there are 2n

events each with 1/2n probability.

H = −2n × 1

2n
log2(1/2)n = n

The above can easily be generalized to the case of a continuous variable and we have

in that case

H(P ) =

∫
P (x)× log(1/P (x))dx

Gibb’s Inequality

It can be seen from Figure 4 that log(x) ≤ x − 1 (This is valid for any base of the

logarithm). The slope of log x being 1/x, its value at x = 1 is 1 so that the tangent to

log x at x = 1 is 1. Further, the tangent line passes through the point x = 1 where its vale



c©D. K. Ghosh, IIT Bombay 6

Figure 3: plot of log(x) (red) and x-1 (violet) against x

is log 1 = 0. Thus the tangent line is y = x− 1. The equality log x = x− 1 is applicable

only at x = 1.

Suppose we have two probability distribution P (x) = {p1, p2, ..., pn} and Q(x) =

{q1, q2, ..., qn}, subject to
∑

i pi =
∑

i qi = 1. Using the above inequality, we can write∑
i

pi log

(
qi
pi

)
≤
∑
i

pi

(
qi
pi
− 1

)
=
∑
i

(pi − qi) = 0

the equality is satisfied if for every i, pi = qi. This is known as Gibb’s inequality. We

can use Gibb’s inequality to obtain a bound on H(P ) and also examine what probability

distribution maximizes the “entropy” H. Consider the difference H(P ) − log(n). We

have,

H(P )− log(n) =
∑
i

pi log(
1

pi
)− log(n)

∑
i

pi

=
∑
i

pi

[
log(

1

pi
)− log(

1

n
)

]
=
∑
i

pi log

(
1/n

pi

)
≤ 0

where we have used Gibb’s inequality in the last step. We have considered P = p1, p2, ..., pn
and Q = 1/n, 1/n, ..., 1/n, i.e. Q is a distribution where each of the n events has the same

probability 1/n. Thus we have, for the function H(P )

0 ≤ H(P ) ≤ log(n)
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H(P ) can be zero only when one of the pi is 1 and the rest are zero while it assumes its

maximum value when the distribution is uniform.

3 Is entropy an appropriate name?

In statistical mechanics, the concept of entropy is introduced to explain macroscopic

properties of a system from its microscopic counterpart. In order to understand the

relationship between this entropy and the one introduced by Shannon, let us look at

Boltzmann approach to entropy, which was introduced in the context of calculation of

energy of an assembly of gas. Suppose, we have N number of particles in a phase space

of given volume. Let us divide the phase space into L number of identical, smaller cells.

A microstate of the system is described by a string a1, a2, ..., aN ,where the particle 1 is in

the cell a1, 2 in cell a2 etc. If more than one particle reside in the same cell, some of the

alphabets in the string are repeated. Boltzmann entropy is given by S = kB lnW , which

we will simply write as logW and the constant can be absorbed by simply changing the

base of the logarithm. W is the number of microstates consistent with a given macrostate.

If there are ni number of particles in the i− th cell, W is given by

W =
N !

n1!n2! . . . nL!

subject to
∑

i ni = N . Taking logarithm of both sides, we get, using Sterling approxima-

tion,

lnW = lnN !−
L∑
i=1

lnni!

= (N lnN −N)−
L∑
i=1

(ni lnni − ni)

= N lnN −
L∑
i=1

ni lnni

The probability of finding a specific particle in the i − th cell is pi = ni/N . In terms of

this we can write Boltzmann entropy as

lnW = N lnN −
L∑
i=1

Npi ln(Npi)

= N lnN −N

L∑
i=1

pi lnN −N

L∑
i=1

pi ln pi

= −N
L∑
i=1

pi ln pi = N

L∑
i=1

pi ln
1

pi



c©D. K. Ghosh, IIT Bombay 8

The average entropy is given by

S

N
=
∑
i

pi ln
1

pi

Let us consider some special distribution.

1. Consider the case where all particles are in a single box i.e. pi = 1 for a particular

box and all other probabilities are zero. Clearly the entropy in this case is zero.

The number of configurations is the same as the number of boxes, viz. L.

2. Consider the case where particles are distributed equally in two specific boxes. The

number of different configurations is found by choosing two boxes out of L (we take

L = 106) and put half of the particles in one of the boxes and the other half in the

second box. This gives

106C2 =
106!

2!(106 − 2)!
=

106(106 − 1)

2
' 1012

2
= 5× 1011

Since the probability of a particle being in either box is 1/2, the entropy of this

configuration is (1/2) ln 2 + (1/2) ln 2 = ln 2. The entropy is somewhat higher than

the case where the particles are all in one single box. The number of configurations

in the single box case is 106 while in the case of two boxes, it is 5× 1011. Thus if we

started with a zero entropy situation (and if these two situations were the only ones

possible) then, the possibility that the entropy becomes ln 2 is
5× 1011

5× 1011 + 106
'

1 − 10−5. This is simply a statement of the fact that the system equlibriate to a

state of maximum entropy.

4 Communication System

A typical communication system consists of a source which emits signals, an encoder,

which provides a symbolic representation to the message using the bits generated by the

source, a channel for transmission, such as an optical fiber, which on the way may pick

up stray noise which will attempt to deteriorate the signal, a receiver which will intercept

the message and finally a decoder. A channel?s information capacity is defined as the rate

(say, in Kbps) of user information that can be carried over a noisy channel with as small

error as possible. This is less than the raw channel capacity, which is the capacity in the

absence of any noise. Suppose we wish to code the letters A, C, G, T by a two bit code.

Assume that the letter A appears with 40% frequency, C with 30%, G and T with 15%

each. If we code A=00, C=01, G=10 and T=11, we have on an average 2 bits of code per

letter. However, consider a new scheme where we code A=0, C=10, G=110 and T=111.

The number of bits per letter (on an average) is 0.4× 1 + 0.3× 2 + 0.15× 3 + 0.15× 3 =
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DecoderSource Encoder
Channel

Noise

Receiver

Figure 4: Schematic representation of a communication system

1.9 per letter which is a small saving over the previous one, but a saving nevertheless.

The entropy associated with the code (which is the optimal compression possible) is

−
∑

i pi log pi = −0.4 log(0.4)− 0.3 log(0.3)− 0.15 log(0.15)− 0.15 log(0.15) = 1.871. This

does not tell us how to construct codes but gives an idea of the optimal compression.

Shannon’s Noiseless Coding theorem, which is applicable for all uniquely deci-

pherable codes, provides a limit for the average length of a code which can be carried

with high degree of fidelity over a noiseless channel. We will prove the theorem for the

special case of “prefix code” ,in which no code word is a prefix for another code word.

The following example illustrates a prefix code.

A=0

B=1

C= 00

D= 11

This is not a uniquely decipherable code. The following is an example of an uniquely

decipherable code but is not a prefix code.
word code comments

A 0

B 01 A is a prefix of B

C 011 B is a prefix of C

D 0111 C is a prefix of D

The following two are valid prefix codes.
A 00 A 0

B 01 B 10

C 10 C 110

D 11 D 111
A prefix code is best illustrated through a tree diagram which hangs upside down from

a node. From the node we take one step left if the code is 0 and one step right if the code

is 1. When the code terminates at a word (letter), we have a ‘leaf’. Take the following

illustration for coding the word “QUANTUM” with the following prefix coding.
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N

0 1

0

0

1

1 0 1

0 1

A

Q
U M

T

Figure 5: Binary tree to code the word “QUANTUM”

word code

A 0

M 01

N 011

U 0111

Q 100

T 1010
The word “QUANTUM” will then be coded as 100 110 0 1011 1010 110 111 which has

21 bits against 56 bits required to code it by using a byte for every letter. This gives a

compression of 37.5%. The tree is as follows:

If the i-th code word is a leaf at a depth ni, the length of the code word is ni itself. If

nk is the depth of the tree,we have nk ≥ nk?1 ≥ . . . n1. Maximum number of leaves appear

in the tree when the only terminal points of the tree are at level k. If there is a leaf r at

the level i it removes a fraction
1

2nk
of leaves from the level k, leaving 2nk?ni number of

leaves. Thus we have

k∑
i=1

2nk−ni ≤ 2nk =⇒
k∑

i=1

1

2ni
≤ 1

The last relation is known as the “Kraft Inequality”. If a set of integers n1, n2, . . . , nk

satisfies the Kraft inequality, it is both a necessary and a sufficient condition for the ex-

istence of a prefix code of lengths equal to these set of numbers.

Shannon’s Theorem

Given a source with alphabet {a1, a2, . . . , ak} which occur with probabilities {p1, p2, . . . , pk}
and entropy H(X) = −

∑k
i=1 pi log pi, the average length of a uniquely decipherable code
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is

n̄ ≥ H(x), i.e.
∑
i

pini ≥ H

Proof:

H − n̄ = −
∑
i

pi log pi −
∑
i

pini

=
∑
i

pi

(
log

1

pi
− ni

)
=
∑
i

pi

(
log

1

pi
+ log 2−ni

)
=
∑
i

pi log
2−ni

pi

≤
∑
i

pi

(
2−ni

pi
− 1

)
=
∑
i

2−ni − 1 ≤ 0

Example :

There are two coins of which one is a fair coin while the other has heads on both sides.

A coin is selected at random and tossed twice. If the tosses result in two heads, what

information does one get regarding the coin that was selected to begin with? Let X be a

random variable which takes value 0 if the coin chosen is a fair coin and takes value 1 for

the biased coin. Let Y be the number of heads. H(X) is the initial uncertainty regarding

the selected coin (which is a one bit uncertainty). The uncertainty remaining when the

number of heads is revealed is H(X|Y ). The information conveyed about the value of X

by revealing Y is then given by I(X|Y ) = H(X)H(X|Y ). Note that if the value of Y is

zero or 1, there is no uncertainty remaining because the coin must then be a fair coin. If

the coin is fair, the probability that Y = 2 is (1/2) × (1/4) = 1/8. If the coin is biased,

the probability that Y = 2 is (1/2)×1 = 1/2. (In both cases 1/2 is the probability that a

coin is selected). Thus the probability of getting Y = 2 is 1/8 + 1/2 = 5/8. We now need

to multiply this with the entropy associated with the process. Using Bay’?s theorem, we

have

P (X|Y = 2) =
P (2|X)P (X)

P (2)

Using the above probability, we can see that given that Y = 2, the probability of X =

0 is 1/5 while the corresponding probability for X = 1 is 4/5. We then have

H(X|Y ) =
5

8

(
4

5
log

5

4
+

1

5
log 5

)
= 0.45

Thus the information conveyed about X is 0.55.


