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1 Introduction

In the last lecture, we discussed Shanon entropy and the limit it imposes on uniquely

decipherable codes. It was seen that the maximum length of a word cannot exceed the

Shannon entropy calculated using the probability of occurrence of a letter in the code.

Von Neumann provided a generalization of the above to the case of quantum systems by

defining a quantum entropy which bears his name. Like the case that Shannon entropy is

a measure of uncertainty associated with a classical event, Von Neumann entropy provides

a measure of ignorance of a quantum system.

2 Von Neumann Entropy

Consider a quantum system described by a density matrix ρ. The expectation value of a

physical quantity described by a quantum mechanical operator A is given by the weighted

average of the expectation value of the operator in different quantum states that constitute

the ensemble,

〈A〉 = Tr (Aρ)

subject to the condition Tr (ρ) = 1. For a pure system Tr (ρ2) = 1 as well. Von Neumann

entropy provides a measure of the degree of mixedness of the system. For a pure system,

the Von Neumann entropy S(ρ) = 0 should be zero. This is similar to the classical case

in which the probability of the event being 1 or 0 for which the Shannon entropy is zero.

Taking the cue from Shannon, Von Neumann defined the entropy of a quantum system

to be given by the expression

S(ρ) = −Tr (ρ log2 ρ)

Let us summarize the properties of the entropy defined thus.
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1. Since the trace is basis independent, the definition of entropy implies that it is

independent of the basis in which the quantum states are expressed. Thus if we go

over to a basis in which the density matrix is diagonal, we have

S(ρ) = −
∑
i

λi log2(λi)

Since the density matrix is a positive matrix with trace being equal to 1, the eigen-

values are 0 ≤ λi ≤ 1 and
∑

i λi = 1. This implies that entropy is a positive

quantity.

2. For a pure state, only one eigenvalue of ρ is 1 and all others are zero. This implies

S(ρ) = 0 for a pure state.

3. We had shown earlier (see Notes accompanying Lecture 35) that as a consequence

of Gibb’s inequality, one can show that if there are D non-zero eigenvalues , the

maximum value of entropy function occurs when all the eigenvalues are equal, i.e.

each eigenvalue is 1/D so that maximum entropy is log2D, i.e. S(ρ) ≤ log2D with

the equality when all eigenvalues are equal.

4. Concavity : For xi ≥ 0 and
∑

i xi = 1, we have S(
∑

i xiρi) ≥
∑

i xiS(ρi), which is

the quantum equivalent of mixing theorem for entropy, i.e. the less we know about

how the state was prepared higher will be the entropy.

5. Sub-Additivity: For a bipartite system AB with ρAB as its density matrix, we have

S(A,B) ≤ S(A) + S(B)

with the equality being valid for the case for which ρAB = ρA⊗ρB, i.e. if the systems

are independent.

6. Conditional entropy S(A|B) is defined as

S(A|B) = S(AB)− S(B)

which signifies the amount of uncertainty B(Bob) still has about the state of

A(Alice).

Proof of these theorems depend on Klein’s inequality, which do not have time to go for

here).

We will illustrate some of the properties stated above. For pure states, the entropy is zero

because there is only one non-zero eigenvalue which is 1. Thus ρA and ρB both have zero

entropy as does ρAB.
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Consider a state
1√
2

(| 0〉+ | 1〉). The density matrix corresponding to it has the repre-

sentation

(
1/2 1/2

1/2 1/2

)
. The eigenvalues can be easily be seen to be 0 and 1 , so that the

entropy is zero.

Consider the maximally mixed state ρ =
1

2
(| 0〉〈0 | + | 1〉〈1 |). The matrix repre-

sentation is

(
1/2 0

0 1/2

)
, which have eigenvalues 1/2 and 1/2 so that the entropy is

−(1/2) log2(1/2)− 1/2 log2(1/2) = 1.

Consider an example to illustrate sub-additivity. Consider a state cos θ | 00〉+ sin θ | 11〉.
The state is pure with entropy equal to zero. Consider now the partial entropy of the first

particle (A). The reduced density matrix for this is obtained by taking the partial trace

over B of the density matrix

ρA = TrB ρ
AB = cos2 θ | 0〉〈0 | + sin2 θ | 1〉〈1 |

The eigenvalues are cos2 θ and sin2 θ so that the entropy is

S(A) = −2 cos2 θ log(cos θ)− 2 sin2 θ log(sin θ)

An identical expression is valid for S(B). If θ 6= 0, sin2 θ and cos2 θ are each less than 1

and hence SA > 0 and SB > 0. Thus sub-additivity is valid.


