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1 Classical Information Theory

What is Information? We are all familiar with the word “information” and probably

understand what it roughly means. However, in a technological context, we need to

give it a precise meaning and also find a way to quantify the amount of information

in a message. Suppose we make a statement like “there will not be an earthquake in

Mumbai tomorrow”. What is the information content of this statement? What additional

knowledge it gives us that we did not have? Almost next to nothing because that is the

way things are supposed to happen in Mumbai. On the other hand, supposing a statement

is made that “there will be an earthquake in Mumbai tomorrow”. This will count as a

statement with significant amount of information because this event has a low probability

of occurrence. Consider the statement “it is cold in Bombay today”. What information

does this statement convey? Is today cold compared to what it was yesterday or is it as

compared to what it was a year before? Is it colder than it is in Alaska or as compared to

Chennai? We do know that the statement has some information, though not very precise.

Suppose we define a day to be cold if the temperature is less than 22◦. Does this statement

give more information? Yes, but only partly so. Let us make it a little more precise by

saying that “cold” in Bombay means that the temperature T is between 16◦ and 22◦, i.e.

17 < T ≤ 22. Assume that the temperature is measured only in integral values. Our

information is better but now there is now an equal probability of the temperature being

17,18, 19, 20, 21 or 22, probability of each is p = 1/6. Thus, associated with a statement

on information is an “uncertainty”. If we try to guess the temperature, say by throwing

a die, we can be right about the temperature with a probability of one sixth. Suppose,

we are told that yesterday the temperature was 19◦ and that today is colder than it was

yesterday. Our uncertainly has now decreased and we can be right about guessing the

temperature by tossing a coin which will give us correct answer with a probability of 1/2.
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Thus the information content in a statement is a measure of uncertainty associated with

an event. If we are going to construct a mathematical measure of information contained

in a message, we need to specify the amount of uncertainty that is there in a message-

the measure of uncertainty cannot be on intuitive ground. Further, we need a measure of

this uncertainty so that when a message is transmitted through a channel, we should be

able to measure the fidelity of transmission by computing the uncertainty at the receiving

end. As the word “information” means different things in different context (for instance,

a cognitive scientist may define information as a piece of knowledge), it is important to

point out that our approach here is content neutral, we are only interested in problem

of data communication and reception. In order to be be able to communicate some

information, a system must be capable of being in at least two states These two states

could be electrical levels with ground (zero volt) or +5 volts, an atomic system with spin

up or down, an ammonia molecule with the nitrogen atom being above or below the plane

defined by three hydrogen atoms etc. Mathematically we represent the two state systems

by 0 and 1. We assume that we can encode the two states of the system by these two

digits and define this as a “bit”. (When the digits represent classical two state systems,

we occasionally call it a cbit. If instead, we have a system which can exist in m different

states, we will need more than a single bit to encode such a system. The minimum number

n which satisfies 2n < m is the minimum number of bits required to describe m different

states. For instance a 4 state system requires 2 bits to describe it and we can represent

the four states by 00, 01, 10 and 11. Hartley proposed the formula for the number of bits

n that is required to send m different messages, the formula for the number of bits n that

is required to send m different messages,

n = log2m

Thus a byte (= 8 bits) can send up to 256 different messages. How does one measure

information content in a signal? There are two basic approaches. The approach by Claude

Shannon, the one that we will follow, defines the amount of information in a signal as the

number of bits that needs to be transmitted in order to select it from a list of previously

agreed choices. Suppose we want to invite a celebrity to an event out of a few previously

agreed list of persons, which consists of Federer, Sania Mirza, Narendra Modi, Hillary

Clinton, Bradd Pitt, Deepika Padukone, J. K. Rowling and Vikram Seth. How many

questions do we need to ask, which can only be answered in Yes or No to arrive at our

decision? Suppose, the number of choices is more, say selecting one candidate out of 8 in

an election, the following decision tree can be used.

The second approach is due to Kolmogorov and Chaitin, where they consider the min-

imum number of bits required to store (compress) a given message. Suppose a source

can only emit one of two possible messages. As per Shannon’s approach, the message is
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Figure 1: A Decision Tree

identified only by sending one bit of information. However, since the message is of ar-

bitrary length, the corresponding Kolmogorov complexity can be arbitrarily large. Thus

whereas Shannon ignores the message itself and only considers the characteristic of the

source which emits the message, Kolmogorov’s concern is only the message. Kolmogorov’s

approach is frequently termed as algoirithmic approach and we can define complexity of

a message as the length of the shortest algorithm which can describe the message. Let

us clarify this by an example. Consider the string which is 200 bit length 010101 . . .

0101. Though the string length is 200 bits, the complexity is quite low because one can

transmit it by writing a short program which describes the string as “hundred 01s”. On

the other hand toss a coin 200 times a generate an arbitrary sequence 0110010110011101

. . .. One cannot write a short program to communicate this exact string by a short

program. Thus the complexity is large.

Shannon’s Entropy Suppose we want to observe a discrete random variable X which

can take finite number of values x1, x2, . . . , xM with probabilities p1, p2, . . . , pM respec-

tively with the proviso
∑

pi = 1. Let H(p1, p2, ..., pM) be the average uncertainty asso-

ciated with the event X = xi, i.e., it is the average uncertainty removed when the result

of the experiment is known. We would like to obtain a mathematical expression for HM .

Let us first discuss the properties that such a function should satisfy.

1. Suppose f(M) is average uncertainty associated with M equally likely events, i.e.,

f(M) = H

(
1

M
,

1

M
, . . .

1

M

)
This means f(2)is the average uncertainty associated with a coin toss, f(6) the

uncertainty associated with throw of a die, etc. Clearly f(M) > f(M ′) if M > M ′.

In otherwards f(M) is a monotonic function of its argument M .
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2. Consider two random variables X and Y , the former taking values x1, x2, . . . xM

with equal probability and the latter taking values y1, y2, . . . yN , also with equal

probability. The joint experiment XY has MN events with equal probability. The

average uncertainty associated with the joint experiment XY is f(MN). Suppose

now, the result of X is revealed. This will not remove the uncertainty in Y and we

will be left with an uncertainty f(N). Thus, we have f(MN) − f(M) = f(N), so

that

f(MN) = f(M) + f(N)

3. Let us now relax the condition of equal probability. Consider an experiment for

measuring a random variable X which has M possible outcomes. The events are

divided into two groups A and B, the former having r outcomes x1, x2, . . . xr and

the latter with M − r outcomes xr+1, xr+2, . . . xM . If the group A is chosen, the

outcome of the event X = xi is
pi∑r
i=1 pi

and if group B is chosen, the outcome of the

event X = xi is
pi∑M

i=r+1 pi
. Suppose Y is the result of the combined experiment in

which we first choose the group (A or B) and then determine the event. Let Y = x1

be the result. We can determine the probability of the combined experiment, by

using Baye’s theorem,

P (Y = x1) = P (A is chosen & x1 is selected)

= P (A is chosen) × P (x1 | A)

=
r∑

i=1

pi ×
p1∑r
i=1 pi

= p1

This shows that X and Y have the same distribution. This implies that P (Y =

xi) = pi ∀i = 1,M .

Before the compound experiment is performed, the uncertainty associated with the out-

come is H(p1, p2, ..., pM). If the group that has been chosen (A or B) is revealed, the

uncertainty removed is H(pA, pB) = H
(∑r

i=1 pi,
∑M

i=r+1 pi

)
so that the uncertainty re-

maining after the group chosen is revealed is given by

H(p1, p2, . . . , PM)−H

(
r∑

i=1

pi,
M∑

i=r+1

pi

)

This must be equal to

∑
pi×H

(
p1∑r
i=1 pi

,
p2∑r
i=1 pi

. . . ,
pr∑r
i=1 pi

)
+
∑

pi×H

(
pr+1∑M
i=r+1 pi

,
pr+2∑M
i=r+1 pi

. . . ,
pM∑M

i=r+1 pi

)
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Example:

Suppose the group A has two possible outcomes with p1 = 1/2, p2 = 1/4 and the group

B also has two outcomes with p3 = p4 = 1/8, we then have,

H

(
1

2
,
1

4
,
1

8
,
1

8

)
−H

(
3

4
,
1

4

)
=

3

4
H

(
2

3
,
1

3

)
+

1

4

(
1

2
,
1

2

)
The above is known as Grouping Theorem. We also require H(p, 1 − p) to be a

continuous function of p. This is intuitive as a small change in p should lead to a small

change in uncertainty. Thus there are four requirement for a function in order to be a

measure of uncertainty:

1. f(M) = H(
1

M
,

1

M
. . . ,

1

M
) is a non-negative, monotonic and continuously increas-

ing function of M .

2. f(1) = 0. This is because, if an event is certain then there is no uncertainty.

3. f(MN) = f(M) + f(N)

4. The grouping theorem stated and proved above.

In the next lecture we will find the explicit form of a function which satisfies the above.


