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1 Introduction

Search algorithms are useful in locating an item in a database, which may either be struc-

tured or unstructured. For instance, in a traditional telephone directory, the names are

arranged alphabetically but the associated telephone numbers are randomly distributed.

The database in this case is structured with respect to names but is unstructured with

respect to the phone numbers. While it is relatively easy to locate a telephone number

of a person whose name we know, it is next to impossible to locate who a particular

phone number belongs to. Searching for an element in an unstructured database is like

the proverbial searching for a “needle in a haystack”.

One can formulate the problem mathematically by defining a function f(k) which has a

value zero for all values of k, (1 � N = 2n) except for one particular value of k = k0 for

which f(k0) = 1. If the database of N values are random, then, in order to locate the

element k = k0, one has to search through the entire database, evaluate f(k) for each k

until such time that we locate a k for which f(k) = 1. To locate k0 with a probability of

1/2, we require N/2 trials. Thus a classical search requires O(N) number of queries.

Structured database clearly reduces the number of queries. An example of such a database

search is given by a function f(k) which takes distinct values for different values of the

argument k. The task here is to find k = k0 such that f(k0) = a. If the values of k are

sorted such that f(k1) > f(k2) > . . . > f(kN), it is easy to locate k0 by a scheme similar

to the method of successive division in finding the roots of a polynomial. If N = 2n, we

first find the value of f(ki) for i = 2n−1, i.e. for the value of function corresponding to

the central element. If f(ki) > a, then k0 is located to the left of the central element,

otherwise, it is located to its right. Thus every evaluation of f(k) shrinks the look up

range by a factor of 2 and we may, therefore, locate the solution by a maximum of log2N

1
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queries.

Grover designed an algorithm for search of an element in an unstructured database in a

quantum computer. If the search has a unique solution, Grover’s algorithm can locate the

item with a high probability in O(
√
N) number of trials resulting in a quadratic speeding

up with respect to classical algorithms. The algorithm attains this by a selective ampli-

fication of the amplitude of the state corresponding to the item to be found. It may be

mentioned that it has been shown that Grover’s algorithm is optimal in the sense that no

other algorithm can perform the same task with a number of trials less than O(
√
N).

2 The Oracle

The quantum oracle calculates a function f for n qubit inputs and returns 1 when the

input matches a particular string w, called the marked string, in all other cases it returns

zero. Thus f : {0, 1}⊗n → {0, 1} with the property

fw(x) =

{
0 for x 6= w

1 for x = w

Being a quantum oracle, it can evaluate superpositions of strings. As the oracle evaluates

a function that is not uniquely invertible (a function that evaluates to zero could have

arisen from many different strings), the operation cannot be unitarily performed using

a single input register. The oracle, therefore, uses a second register whose final state

depends on what happens to the content of the first register. The oracle is schematically

represented by the following figure In the Deutsch-Jozsa algorithm, we had seen that if

f(x)

U
f

x

y

x

y

Figure 1: The Oracle

the content of the second register | y〉 is taken to be (| 0〉− | 1〉)/
√

2, the output can be

written as

(−1)fw(x) | x〉 1√
2

(| 0〉− | 1〉) (1)

which shows that the second register is unaltered but the sign of the state in the first

register depends on the function fw(x). Thus we focus our attention on the state of

the first register. If the input string does not match with the marked string w, then
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f − w(x) = 0 and the sign of the first register is unaltered. However, if x = w, the sign

of the state is flipped. The unitary operator which can achieve this is given by

Uw = I − 2 | w〉〈w | (2)

where | w〉 is the state of the marked item, which is orthogonal to the states associated

with the remaining items in the database.

3 Grover Operator and its Geometric Interpretation

The first stage of the algorithm consists of creating a standard state | s〉 which is a

combination of all 2n basis states of n qubits. The state | s〉 is a linear combination of N

basis states, each with the same amplitude and phase. As has been seen earlier, such a

state is obtained by Hadamard transform of an initial state | 0〉⊗n. we associate a unique

basis with each of the items in the database. as the marked state | w〉 is a member of the

basis, we have,

| 〈w | s〉 |= 1√
N

(3)

Corresponding to the state | s〉, we define a reflection operator Us which has the property

that acting on an arbitrary state | ψ〉, it leaves the component of | ψ〉 along | s〉 undis-

turbed but flips the sign of the component perpendicular to | s〉. Such an operator is

given by

Us = 2 | s〉〈s | −I (4)

Grover rotation operator RG is product of the sign flip operator Uw and the reflection

operator Us defined in (2) and (4),

RG = UsUw (5)

A simple geometrical interpretation of the Grover operator RG can be seen by operating

RG on an arbitrary state | ψ〉 in the plane defined by | s〉 and | w〉 (see Figure 2). Let

| 〈w | s〉 |= 1√
N

= sin θ (6)

so that the angle between the vectors | s〉 and | w〉 is
π

2
− θ. Figure 2 illustrates the

successive application of Uw and Us on the state | ψ〉. From the figure, it is clear that the

angle between | ψ〉 and its state | ψ2〉, after application of Grover rotation is 2(φ+χ) = 2θ.

This rotation provides a basis for Grover’s search.

As a simple illustration, consider Figure 2 for N = 4, i.e. for an unsorted database of just

4 elements from which one state is to be found. We consider what happens when Grover

rotation is applied to the state | s〉. In this case we have, using (3), | 〈w | s〉 |= 1√
4

=
1

2
,

so that θ = 30◦. Recall that θ is the angle between | s〉 and | w⊥〉. Thus a single rotation
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Figure 2: Grover Rotation

RG would rotate the state | s〉 by 2θ = 60◦, i.e. align the state | s〉 with | w〉.

Consider the case of N = 8. In this case sin θ =
1

2
√

2
so that θ = 20.7◦. The angle

between | s〉 and | w〉 is thus 69.3◦. Since each application of RG rotates | s〉 by 2θ = 41.4◦,

after the first iteration, the angle between | s〉 and | w〉 is 27.9◦. A second iteration makes

this angle −13.5◦ which is closer to | w〉 than it was after the first iteration. A third

iteration, however, takes it farther away at 54.9◦. Thus for N = 8 a maximum of two

iteration is indicated. One can check that the amplitude of the marked state becomes

the largest after two iterations. We thus need to know, a-priori, how many iterations are

required. As N increases, every rotation step becomes smaller and we can control the

process of approaching the marked state much better. In the next lecture we will get an

estimate of the number of iterations required.

The operation of Uw on an arbitrary state flips the sign of the component of | ψ〉
parallel to | w〉. This is followed by the application of the reflection operator Us on the
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resulting state. It is instructive to look at the action of Us on an arbitrary state. Consider

its effect on an arbitrary state | φ〉 where the state is expressed in the computational basis

{| x〉}
| φ〉 =

∑
x

ax | x〉 (7)

Using (4), we have

〈s | φ〉 =
1√
N

∑
x

ax =
√
Nā

where ā =
1

N

∑
x ax is the mean amplitude of | φ〉 in the computational basis. We then

have,

Us | φ〉 = [2 | s〉〈s | −I] | φ〉
= 2 | s〉〈s || φ〉− | φ〉

= 2
√
Nā | s〉− | φ〉

=
∑
x

(2ā− ax) | x〉 (8)

Equation (34) shows that the amplitude ax under reflection becomes 2ā − ax so that

the amplitude of the state with respect to the mean ax − ā becomes ā − ax, i.e. it gets

inverted. To illustrate this consider the case of N = 8. In the state | s〉 each of the state

in the computational basis has an amplitude
1

2
√

2
. In Figure 5 the top panel shows equal

amplitude of the eight states in | s〉. Since each state has the same amplitude, the mean

is also
1

2
√

2
. The application of Uw on the state | s〉 inverts the component parallel to

| w〉. In the figure, we have taken the marked state | w〉 to be the 4th state so that in

the second panel, only the 4th component is shown inverted. Calling this state | φ〉, we

have the amplitude aw = − 1

2
√

2
and ax =

1

2
√

2
for all x 6= w. Thus the mean amplitude

at this stage is
1

8

(
7

1

2
√

2
− 1

2
√

2

)
=

3

8
√

2
. An application of Us on this state will let

ax → 2ā − ax, i.e., for all states other than the marked state | w〉, the amplitude will

become ax′ =
3

4
√

2
− 1

2
√

2
=

1

2
√

2
. The amplitude of the marked state | w〉 becomes

aw′ =
3

4
√

2
+

1

2
√

2
=

5

4
√

2
which has a magnitude five times that of each of the other

component, i.e., the probability density of the state is amplified 25 times with respect to

each of the ummarked states.

4 Maximum Number of Iteration

We saw that the function of the Grover operator RG is to selectively amplify the ampli-

tude of the state | w〉. The angle between | s〉 and | w〉 is
π

2
− θ. thus the number of
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Figure 3: Selective Amplification

iteration should be such that | s〉 is rotated by an angle as close to
π

2
−θ as possible. This

requires an a priori knowledge of the number of iteration.

We can get an estimate of the number of iterations m for large N for which sin θ ≈
θ =

1√
N

. For this we require

m× 2θ ≈ π

2
− θ

which gives

m =
π

4θ
− 2

The number of iterations for large N is, therefore, given by

m ≈ π

4

√
N (9)

which shows that unlike the classical search, the number of queries is O(
√
N). after m it

erations, the angle between | s〉 and | w〉 is
π

2
− (2m + 1)θ whoch gives the amplitude of

the state | w〉 in | s〉 to be

| sin(2m+ 1)θ | =
∣∣∣∣sin((

π

2

√
N + 1)

1√
N

)∣∣∣∣
=

∣∣∣∣sin(π2 +
1√
N

)∣∣∣∣
=| cos

1√
N
|

≈ 1− 1

2N
(10)

which shows the amplitude to be very close to 1.
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5 Matrix Representation of Grover Operator

Grover’s algorithm is implemented in the following steps.

1. We first construct a state | s〉 which is a uniform linear combination of N states in

the computational basis. This is obtained by starting with an initial state | 0〉⊗n
and subjecting it to Hadamard transform, which gives

| s〉 =
1

2n/2

∑
x

| x〉

2. The (n+ 1)-th quit is initialised to | y〉 =
| 0〉− | 1〉√

2

we carry out repeated Grover iteration, starting with the standard state | s〉. Such

iterations will randomise the state | s〉 . It is thus instructive to see what these do, acting

on an arbitrary state | ψ〉 =
∑

k a(k) | k〉. We perform the following steps m times, where

m will be computed later.

1. Apply the oracle. Here we calculate the value of the unitary map Uf and XOR it

with the last qubit to obtain a phase factor (−1)f(x).

| s〉 | y〉 →
N−1∑
x=0

ax | x〉(−1)f(x) | y〉

(Initially ax =
1√
N

for each x). We denote this transformation by T .

2. Now apply on the resulting state a “diffusion operator” D defined below.

The matrix elements of the diffusion matrix is defined as follows:

Dii = −1 +
2

N

Dij =
2

N
, for i 6= j (11)

It is easily seen that if we define a N × N matrix J which has each element as 1, the

“diffusion operator” has the representation

D = −I +
2J

N
(12)

It is easily checked that
J

N
is a projection operator as

J

N
=

(
J

N

)2

. Using this, it follows

that D is unitary. Since each element of J is 1, it follows that acting on a column vector
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(a1, a2, . . . , aN)T , we get

J

N


a1
a2
. . .

. . .

aN

 =



a1 + a2 + . . .+ aN
N

a1 + a2 + . . .+ aN
N
. . .

. . .
a1 + a2 + . . .+ aN

N


=


ā

ā

. . .

. . .

ā

 (13)

where ā =
1

N

∑
i ai. Thus if we take an arbitrary vector | v〉 =

∑
x vx | x〉 in a basis

{| x〉}, we get,
J

N
| v〉 =

J

N

∑
x

vx | x〉 =
∑
x

v̄ | x〉

Thus the action of the diffusion operator on an arbitrary vector is given by the following.

D | v〉 =

(
−I +

J

N

)
| v〉 = − | v〉+ 2

∑
x

v̄ | x〉

= −
∑
x

vx | x〉+ 2
∑
x

v̄ | x〉

=
∑
x

(2v̄ − vx) | x〉 (14)

This shows that the diffusion operator D represents the Grover operator Us = −I + 2〈s ||
s〉.
The diffusion operator defined above can be obtained by application of the following

sequence of operators:

D = WRW (15)

where W is the Walsh Hadamard transform whose elements are given by

Wij =
1√
N

(−1)i·j (16)

so that the Walsh-Hadamard transform of an n− qubit state | x〉 is given by

H⊗n | x〉 =
1√
N

∑
y

(−1)x·y | y〉 (17)

where x · y represents the sum bitwise product of the two strings x and y. The operator

R is a selective phase rotation which is a diagonal matrix with its first element as 1 and

others equal to −1.The matrix R can be represented as

Rij = (2δi,0 − 1)δi,j ≡ (−1)1−δi,0δi,j (18)
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To show (15), we will consider the matrix elements of both sides of the equation in

arbitrary states | x〉 and | y〉 and show that

〈x | WRW | y〉 = 〈x | D | y〉 (19)

Consider the r.h.s of (19). We have,

〈x | WRW | y〉 =
∑
u,v

〈x | W | u〉〈u | R | v〉〈v | W | y〉

=
1

N

∑
u,v

(−1)x·u · (−1)1−δu,0δu,v · (−1)v·y (20)

where we have used (16) and (18). We will now perform the sum over u on the right of

(20). We have, splitting the sum into a term for which u = 0 and another for which u 6= 0,

∑
u

(−1)x·u · (−1)1−δu,0δu,v = (−1)0(−1)0δ0,v −
N∑
u=1

(−1)x·uδu,v

= 2δ0,v −
N∑
u=0

(−1)x·uδu,v

= 2δ0,v −
N∑
u=0

(−1)xn−1un−1+...+x0u0δun−1, vn−1δun−2, vn−2 . . . δu0, v0

= 2δ0,v −

(
1∑

un−1=0

(−1)xn−1un−1δun−1, vn−1

)(
1∑

un−2=0

(−1)xn−2un−2δun−2, vn−2

)
. . .

(
1∑

u0=0

(−1)x0u0δu0, v0

)
(21)

In (21), in the second line, we have once again added and subtracted u = 0 term and in

the third line we have written explicitly in terms of the bits.

Substituting (21) into the r.h.s. of (20), we can write the r.h.s as

r.h.s. =
1

N

N−1∑
v=0

[
2δ0,v −

(
1∑

un−1=0

(−1)xn−1un−1δun−1, vn−1

)
. . .

(
1∑

u0=0

(−1)x0u0δu0, v0

)]
× (−1)v·y

=
2

N
− 1

N

[(
1∑

un−1,vn−1=0

(−1)xn−1un−1+vn−1yn−1δun−1, vn−1

)
. . .

(
1∑

u0,v0=0

(−1)x0u0+v0y0δu0, v0

)]

=
2

N
− 1

N

(
1 + (−1)xn−1+yn−1

)
. . .
(
1 + (−1)x0+y0

)
=

2

N
− 2n

N
δxn−1,yn−1 . . . δx0,y0

=
2

N
− δx,y (22)
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Returning to the l.h.s of (20), we have, using D = −I + 2 | s〉〈s |,

〈x | D | y〉 = −δx,y + 2〈x | s〉〈s | y〉

= −δx,y − 2
1√
N

1√
N

=
2

N
− δx,y (23)

Comparing (22) and (23), the relation (19) and hence (15) follows.

6 Quantum Circuit

The steps in the above analysis can be summarised as follows:

1. Construct an equal superposition of basis states starting with | 0〉⊗n. The (n+1)-th

quit is set as | y〉 =
| 0〉− | 1〉√

2
. Thus we start with | ψ0〉 =

∑
x ax | x〉 | y〉 with

ax =
1√
N

for all x.

2. Apply the oracle Uf which computes f(x) to produce the phase factor (−1)f(x).

Thus

| ψ0〉 | y〉 →
N−1∑
x=0

ax | x〉(−1)f(x) | y〉

This transformation will be denoted by T .

3. Apply the diffusion operator D = WRW which isa Hadamard transform followed

by a phase shift R followed by yet another Hadamard transform.

4. apply steps 2 and 3 O(
√
N) times.

5. Measure the state of the first register. with a very high degree of probability, it

would identify the marked state. If it fails (probability O(1/N)), go back to step 1.

A schematic circuit representation for the above is given below:

M

0

0

0

Oracle

y

U
f

H
n

D U

Oracle

f D

Figure 4: Schematic Circuit for Grover Algorithm



c©D. K. Ghosh, IIT Bombay 11

7 Success and Failure of Algorithm

Let us denote the marked state as | ψm〉 and unmarked state as | ψu〉,

| ψu〉 =
1√

N − 1

∑
x6=m

| x〉

Thus the state | s〉 can be written as

| s〉 =
1√
N
| ψm〉+

√
N − 1

N

∑
x 6=m

| x〉

The operation T inverts the marked state. On applying the diffusion operator D, the

amplitude of the marked state increases. Suppose at the j-th iteration, the amplitude of

the marked state is mj and that of each unmarked state is uj, i.e. after j−th iteration, the

state is written as (uj, uj, . . . , uj,mj, uj . . . uj)
T . The diffusion operator D = −I +

2

N
J

will transform this as follows:

uj+1

. . .

uj+1

mj+1

uj+1

. . .

uj+1


=



−uj
. . .

−uj
−mj

−uj
. . .

−uj


+

2

N



1 1 . . . 1 1

1 1 . . . 1 1

1 1 . . . 1 1

. . . . . . . . . . . . . . .

1 1 . . . 1 1

1 1 . . . 1 1





uj
. . .

uj
mj

uj
. . .

uj


Multiplying the last two matrices and recognising that the expression correspondingto

uj+1 is the same for all the N − 1 locations while at the marked location, the expression

is different, we may write this as

mj+1 =

(
2

N
− 1

)
mj +

2

N
(N − 1)uj (24)

uj+1 =
2

N
mj +

N − 2

N
uj (25)

The coupled equations above can be solved. If we assume that at the beginning of each

iteration, mj has been made negative by application of the operator T , we can write

mj+1 =

(
1− 2

N

)
mj +

2

N
uj (26)

uj+1 = − 2

N
mj +

N − 2

N
uj (27)
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Define cj =
√
N − 1uj This enables us to write the coupled equations as

(
mj+1

cj+1

)
=

 1− 2

N

2
√
N − 1

N

−2
√
N − 1

N

N − 2

N

(mj

cj

)
(28)

=

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
mj

cj

)
(29)

where sin θ =
1√
N

and cos θ =

√
1− 1

N
.

The equations shows that the effect is one of rotation by 2θ. Denoting the rotation

matrix above by M , we have(
mj

cj

)
= M j

(
m1

c1

)
= M j

(
sin θ

cos θ

)
(30)

=

(
sin(2j + 1)θ

cos(2j + 1)θ

)
(31)

In the above, we have used m1 =
1√
N

= sin θ and since (N − 1)u21 + m2
1 = c21 + m2

1 = 1,

c1 = cos θ.

Thus application of Grover iteration k times gives

Gk | s〉 = sin[(2k + 1)θ] | ψm〉+
1√

N − 1
cos[(2k + 1)θ]

∑
x 6=m

| x〉 (32)

Thus measurement of the first register would yield the marked state with a probability

sin2[(2k + 1)θ].

8 Example

Consider N = 8. Let us assume that the 4th state is marked. Using D = −I + 2J/N =

−I + J/4. Recall that each element of J is 1. The matrix G = DT is given by

-0.75 0, 25 0.25 0.25 0.25 0.25 0.25 0.25

0.25 -0,75 0.25 0.25 0.25 0.25 0.25 0.25

0.25 0, 25 -0.75 0.25 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 -0.75 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 0.25 -0.75 0.25 0.25 0.25

0.25 0, 25 0.25 0.25 0.25 -0.75 0.25 0.25

0.25 0, 25 0.25 0.25 0.25 0.25 -0.75 0.25

0.25 0, 25 0.25 0.25 0.25 0.25 0.25 -0.75





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


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Multiplying the two matrices, one notices that the resulting matrix is different from D in

that the fourth column is different.

DT =



-0.75 0, 25 0.25 -0.25 0.25 0.25 0.25 0.25

0.25 -0,75 0.25 -0.25 0.25 0.25 0.25 0.25

0.25 0, 25 -0.75 -0.25 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 0.75 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 -0.25 -0.75 0.25 0.25 0.25

0.25 0, 25 0.25 -0.25 0.25 -0.75 0.25 0.25

0.25 0, 25 0.25 -0.25 0.25 0.25 -0.75 0.25

0.25 0, 25 0.25 -0.25 0.25 0.25 0.25 -0.75


Thus id the matrix is to act on (u, u, u,m, u, u, u, u)T , we would get, because of symmetry,

DT



u

u

u

m

u

u

u

u


=



0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m

1.75u+ 0.75m

0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m


which shows

u1 = 0.75u0 − 0.25m0

m1 = 1.75u0 + 0.75m0

It can be checked that norm is preserved in the transformation 7u21 + m2
1 = 7u20 + m2

0.

Thus effectively, n iterations can be performed by application of the following:(
un
mn

)
=

(
0.75 −0, 25

1.75 0.75

)n(
u0
m0

)

9 The Quadratic Speeding

We begin by providing a somewhat different interpretation of Grover rotation Rs = UsUw.

The operation of Uw on an arbitrary state flips the sign of the component of | ψ〉 parallel

to | w〉. This is followed by the application of the reflection operator Us on the resulting

state. It is instructive to look at the action of Us on an arbitrary state. Consider its effect

on an arbitrary state | ψ〉 where the state is expressed in the computational basis {| x〉}

| ψ〉 =
∑
x

ax | x〉 (33)
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Using (4), we have, using | s〉 =
1√
N

∑
x | x〉

〈s | ψ〉 =
1√
N

∑
x,x′

ax′〈x |x′〉 =
1√
N

∑
x

ax =
√
Nā

where ā =
1

N

∑
x ax is the mean amplitude of | φ〉 in the computational basis. We then

have,

Us | ψ〉 = [2 | s〉〈s | −I] | ψ〉
= 2 | s〉〈s || ψ〉− | ψ〉

= 2
√
Nā | s〉− | ψ〉

=
∑
x

(2ā− ax) | x〉 (34)

Equation (34) shows that the amplitude ax under reflection becomes 2ā − ax so that

the amplitude of the state with respect to the mean ax − ā becomes ā − ax, i.e. it gets

inverted. To illustrate this consider the case of N = 8. In the state | s〉 each of the state

in the computational basis has an amplitude
1

2
√

2
. In Figure 5 the top panel shows equal

amplitude of the eight states in | s〉. Since each state has the same amplitude, the mean

is also
1

2
√

2
. The application of Uw on the state | s〉 inverts the component parallel to

| w〉. In the figure, we have taken the marked state | w〉 to be the 4th state so that in

the second panel, only the 4th component is shown inverted. Calling this state | φ〉, we

have the amplitude aw = − 1

2
√

2
and ax =

1

2
√

2
for all x 6= w. Thus the mean amplitude

at this stage is
1

8

(
7

1

2
√

2
− 1

2
√

2

)
=

3

8
√

2
. An application of Us on this state will let

ax → 2ā − ax, i.e., for all states other than the marked state | w〉, the amplitude will

become ax′ =
3

4
√

2
− 1

2
√

2
=

1

2
√

2
. The amplitude of the marked state | w〉 becomes

aw′ =
3

4
√

2
+

1

2
√

2
=

5

4
√

2
which has a magnitude five times that of each of the other

component, i.e., the probability density of the state is amplified 25 times with respect to

each of the ummarked states.

10 Maximum Number of Iteration

We saw that the function of the Grover operator RG is to selectively amplify the ampli-

tude of the state | w〉. The angle between | s〉 and | w〉 is
π

2
− θ. thus the number of

iteration should be such that | s〉 is rotated by an angle as close to
π

2
−θ as possible. This

requires an a priori knowledge of the number of iteration.
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Figure 5: Selective Amplification

We can get an estimate of the number of iterations m for large N for which sin θ ≈
θ =

1√
N

. For this we require

m× 2θ ≈ π

2
− θ

which gives

m =
π

4θ
− 2

The number of iterations for large N is, therefore, given by

m ≈ π

4

√
N (35)

which shows that unlike the classical search, the number of queries is O(
√
N). after m

iterations, the angle between | s〉 and | w〉 is
π

2
− (2m+ 1)θ which gives the amplitude of

the state | w〉 in | s〉 to be

| sin(2m+ 1)θ | =
∣∣∣∣sin((

π

2

√
N + 1)

1√
N

)∣∣∣∣
=

∣∣∣∣sin(π2 +
1√
N

)∣∣∣∣
=| cos

1√
N
|

≈ 1− 1

2N
(36)

which shows the amplitude to be very close to 1. This shows the quadratic acceleration

of the algorithm referred to in the introduction. Figure 6 shows that for N=4096, the

maximum amplitude is obtained by iterating the algorithm 49 times after which it starts

decreasing again, which is in agreement with the large N formula (35) obtained above.
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Figure 6: Grover Iterations for N=4096

11 Matrix Representation of Grover Operator

Grover’s algorithm is implemented in the following steps.

1. We first construct a state | s〉 which is a uniform linear combination of N states in

the computational basis. This is obtained by starting with an initial state | 0〉⊗n
and subjecting it to Hadamard transform, which gives

| s〉 =
1

2n/2

∑
x

| x〉

2. The (n+ 1)-th quit is initialised to | y〉 =
| 0〉− | 1〉√

2

we carry out repeated Grover iteration, starting with the standard state | s〉. Such

iterations will randomise the state | s〉 . It is thus instructive to see what these do, acting

on an arbitrary state | ψ〉 =
∑

k a(k) | k〉. We perform the following steps m times, where

m will be computed later.

1. Apply the oracle. Here we calculate the value of the unitary map Uf and XOR it

with the last qubit to obtain a phase factor (−1)f(x).

| s〉 | y〉 →
N−1∑
x=0

ax | x〉(−1)f(x) | y〉

(Initially ax =
1√
N

for each x). We denote this transformation by T .
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2. Now apply on the resulting state a “diffusion operator” D defined below.

The matrix elements of the diffusion matrix is defined as follows:

Dii = −1 +
2

N

Dij =
2

N
, for i 6= j (37)

It is easily seen that if we define a N × N matrix J which has each element as 1, the

“diffusion operator” has the representation

D = −I +
2J

N
(38)

It is easily checked that
J

N
is a projection operator as

J

N
=

(
J

N

)2

. Using this, it follows

that D is unitary. Since each element of J is 1, it follows that acting on a column vector

(a1, a2, . . . , aN)T , we get

J

N


a1
a2
. . .

. . .

aN

 =



a1 + a2 + . . .+ aN
N

a1 + a2 + . . .+ aN
N
. . .

. . .
a1 + a2 + . . .+ aN

N


=


ā

ā

. . .

. . .

ā

 (39)

where ā =
1

N

∑
i ai. Thus if we take an arbitrary vector | v〉 =

∑
x vx | x〉 in a basis

{| x〉}, we get,
J

N
| v〉 =

J

N

∑
x

vx | x〉 =
∑
x

v̄ | x〉

Thus the action of the diffusion operator on an arbitrary vector is given by the following.

D | v〉 =

(
−I +

J

N

)
| v〉 = − | v〉+ 2

∑
x

v̄ | x〉

= −
∑
x

vx | x〉+ 2
∑
x

v̄ | x〉

=
∑
x

(2v̄ − vx) | x〉 (40)

This shows that the diffusion operator D represents the Grover operator Us = −I + 2〈s ||
s〉.
The diffusion operator defined above can be obtained by application of the following

sequence of operators:

D = WRW (41)
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where W is the Walsh Hadamard transform whose elements are given by

Wij =
1√
N

(−1)i·j (42)

so that the Walsh-Hadamard transform of an n− qubit state | x〉 is given by

H⊗n | x〉 =
1√
N

∑
y

(−1)x·y | y〉 (43)

where x · y represents the sum bitwise product of the two strings x and y. The operator

R is a selective phase rotation which is a diagonal matrix with its first element as 1 and

others equal to −1.The matrix R can be represented as

Rij = (2δi,0 − 1)δi,j ≡ (−1)1−δi,0δi,j (44)

To show (15), we will consider the matrix elements of both sides of the equation in

arbitrary states | x〉 and | y〉 and show that

〈x | WRW | y〉 = 〈x | D | y〉 (45)

Consider the r.h.s of (19). We have,

〈x | WRW | y〉 =
∑
u,v

〈x | W | u〉〈u | R | v〉〈v | W | y〉

=
1

N

∑
u,v

(−1)x·u · (−1)1−δu,0δu,v · (−1)v·y (46)

where we have used (16) and (18). We will now perform the sum over u on the right of

(20). We have, splitting the sum into a term for which u = 0 and another for which u 6= 0,

∑
u

(−1)x·u · (−1)1−δu,0δu,v = (−1)0(−1)0δ0,v −
N∑
u=1

(−1)x·uδu,v

= 2δ0,v −
N∑
u=0

(−1)x·uδu,v

= 2δ0,v −
N∑
u=0

(−1)xn−1un−1+...+x0u0δun−1, vn−1δun−2, vn−2 . . . δu0, v0

= 2δ0,v −

(
1∑

un−1=0

(−1)xn−1un−1δun−1, vn−1

)(
1∑

un−2=0

(−1)xn−2un−2δun−2, vn−2

)
. . .

(
1∑

u0=0

(−1)x0u0δu0, v0

)
(47)

In (21), in the second line, we have once again added and subtracted u = 0 term and in

the third line we have written explicitly in terms of the bits.
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Substituting (21) into the r.h.s. of (20), we can write the r.h.s as

r.h.s. =
1

N

N−1∑
v=0

[
2δ0,v −

(
1∑

un−1=0

(−1)xn−1un−1δun−1, vn−1

)
. . .

(
1∑

u0=0

(−1)x0u0δu0, v0

)]
× (−1)v·y

=
2

N
− 1

N

[(
1∑

un−1,vn−1=0

(−1)xn−1un−1+vn−1yn−1δun−1, vn−1

)
. . .

(
1∑

u0,v0=0

(−1)x0u0+v0y0δu0, v0

)]

=
2

N
− 1

N

(
1 + (−1)xn−1+yn−1

)
. . .
(
1 + (−1)x0+y0

)
=

2

N
− 2n

N
δxn−1,yn−1 . . . δx0,y0

=
2

N
− δx,y (48)

Returning to the l.h.s of (20), we have, using D = −I + 2 | s〉〈s |,

〈x | D | y〉 = −δx,y + 2〈x | s〉〈s | y〉

= −δx,y − 2
1√
N

1√
N

=
2

N
− δx,y (49)

Comparing (22) and (23), the relation (19) and hence (15) follows.

12 Quantum Circuit

The steps in the above analysis can be summarised as follows:

1. Construct an equal superposition of basis states starting with | 0〉⊗n. The (n+1)-th

quit is set as | y〉 =
| 0〉− | 1〉√

2
. Thus we start with | ψ0〉 =

∑
x ax | x〉 | y〉 with

ax =
1√
N

for all x.

2. Apply the oracle Uf which computes f(x) to produce the phase factor (−1)f(x).

Thus

| ψ0〉 | y〉 →
N−1∑
x=0

ax | x〉(−1)f(x) | y〉

This transformation will be denoted by T .

3. Apply the diffusion operator D = WRW which isa Hadamard transform followed

by a phase shift R followed by yet another Hadamard transform.

4. apply steps 2 and 3 O(
√
N) times.
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5. Measure the state of the first register. with a very high degree of probability, it

would identify the marked state. If it fails (probability O(1/N)), go back to step 1.

A schematic circuit representation for the above is given below:

M

0

0

0

Oracle

y

U
f

H
n

D U

Oracle

f D

Figure 7: Schematic Circuit for Grover Algorithm

13 Success and Failure of Algorithm

Let us denote the marked state as | ψm〉 and unmarked state as | ψu〉,

| ψu〉 =
1√

N − 1

∑
x6=m

| x〉

Thus the state | s〉 can be written as

| s〉 =
1√
N
| ψm〉+

√
N − 1

N

∑
x 6=m

| x〉

The operation T inverts the marked state. On applying the diffusion operator D, the

amplitude of the marked state increases. Suppose at the j-th iteration, the amplitude of

the marked state is mj and that of each unmarked state is uj, i.e. after j−th iteration, the

state is written as (uj, uj, . . . , uj,mj, uj . . . uj)
T . The diffusion operator D = −I +

2

N
J

will transform this as follows:

uj+1

. . .

uj+1

mj+1

uj+1

. . .

uj+1


=



−uj
. . .

−uj
−mj

−uj
. . .

−uj


+

2

N



1 1 . . . 1 1

1 1 . . . 1 1

1 1 . . . 1 1

. . . . . . . . . . . . . . .

1 1 . . . 1 1

1 1 . . . 1 1





uj
. . .

uj
mj

uj
. . .

uj


Multiplying the last two matrices and recognising that the expression correspondingto

uj+1 is the same for all the N − 1 locations while at the marked location, the expression
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is different, we may write this as

mj+1 =

(
2

N
− 1

)
mj +

2

N
(N − 1)uj (50)

uj+1 =
2

N
mj +

N − 2

N
uj (51)

The coupled equations above can be solved. If we assume that at the beginning of each

iteration, mj has been made negative by application of the operator T , we can write

mj+1 =

(
1− 2

N

)
mj +

2

N
uj (52)

uj+1 = − 2

N
mj +

N − 2

N
uj (53)

Define cj =
√
N − 1uj This enables us to write the coupled equations as

(
mj+1

cj+1

)
=

 1− 2

N

2
√
N − 1

N

−2
√
N − 1

N

N − 2

N

(mj

cj

)
(54)

=

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
mj

cj

)
(55)

where sin θ =
1√
N

and cos θ =

√
1− 1

N
.

The equations shows that the effect is one of rotation by 2θ. Denoting the rotation

matrix above by M , we have(
mj

cj

)
= M j

(
m1

c1

)
= M j

(
sin θ

cos θ

)
(56)

=

(
sin(2j + 1)θ

cos(2j + 1)θ

)
(57)

In the above, we have used m1 =
1√
N

= sin θ and since (N − 1)u21 + m2
1 = c21 + m2

1 = 1,

c1 = cos θ.

Thus application of Grover iteration k times gives

Gk | s〉 = sin[(2k + 1)θ] | ψm〉+
1√

N − 1
cos[(2k + 1)θ]

∑
x 6=m

| x〉 (58)

Thus measurement of the first register would yield the marked state with a probability

sin2[(2k + 1)θ].
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14 Example

Consider N = 8. Let us assume that the 4th state is marked. Using D = −I + 2J/N =

−I + J/4. Recall that each element of J is 1. The matrix G = DT is given by

-0.75 0, 25 0.25 0.25 0.25 0.25 0.25 0.25

0.25 -0,75 0.25 0.25 0.25 0.25 0.25 0.25

0.25 0, 25 -0.75 0.25 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 -0.75 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 0.25 -0.75 0.25 0.25 0.25

0.25 0, 25 0.25 0.25 0.25 -0.75 0.25 0.25

0.25 0, 25 0.25 0.25 0.25 0.25 -0.75 0.25

0.25 0, 25 0.25 0.25 0.25 0.25 0.25 -0.75





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


Multiplying the two matrices, one notices that the resulting matrix is different from D in

that the fourth column is different.

DT =



-0.75 0, 25 0.25 -0.25 0.25 0.25 0.25 0.25

0.25 -0,75 0.25 -0.25 0.25 0.25 0.25 0.25

0.25 0, 25 -0.75 -0.25 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 0.75 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 -0.25 -0.75 0.25 0.25 0.25

0.25 0, 25 0.25 -0.25 0.25 -0.75 0.25 0.25

0.25 0, 25 0.25 -0.25 0.25 0.25 -0.75 0.25

0.25 0, 25 0.25 -0.25 0.25 0.25 0.25 -0.75


Thus id the matrix is to act on (u, u, u,m, u, u, u, u)T , we would get, because of symmetry,

DT



u

u

u

m

u

u

u

u


=



0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m

1.75u+ 0.75m

0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m


which shows

u1 = 0.75u0 − 0.25m0

m1 = 1.75u0 + 0.75m0

It can be checked that norm is preserved in the transformation 7u21 + m2
1 = 7u20 + m2

0.

Thus effectively, n iterations can be performed by application of the following:(
un
mn

)
=

(
0.75 −0, 25

1.75 0.75

)n(
u0
m0

)
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15 Matrix Representation of Grover Operator

Grover’s algorithm is implemented in the following steps, using a matrix representation.

1. We first construct a state | s〉 which is a uniform linear combination of N states in

the computational basis. This is obtained by starting with an initial state | 0〉⊗n
and subjecting it to Hadamard transform, which gives

| s〉 =
1

2n/2

∑
x

| x〉

2. The (n+ 1)-th quit is initialised to | y〉 =
| 0〉− | 1〉√

2

we carry out repeated Grover iteration, starting with the standard state | s〉. Such

iterations will randomise the state | s〉 . It is thus instructive to see what these do, acting

on an arbitrary state | ψ〉 =
∑

k a(k) | k〉. We perform the following steps m times, where

m will be computed later.

1. Apply the oracle. Here we calculate the value of the unitary map Uf and XOR it

with the last qubit to obtain a phase factor (−1)f(x).

| s〉 | y〉 →
N−1∑
x=0

ax | x〉(−1)f(x) | y〉

(Initially ax =
1√
N

for each x). We denote this transformation by T .

2. Now apply on the resulting state a “diffusion operator” D defined below.

The matrix elements of the diffusion matrix is defined as follows:

Dii = −1 +
2

N

Dij =
2

N
, for i 6= j (59)

It is easily seen that if we define a N × N matrix J which has each element as 1, the

“diffusion operator” has the representation

D = −I +
2J

N
(60)

It is easily checked that
J

N
is a projection operator as

J

N
=

(
J

N

)2

. Using this, it follows

that D is unitary. Since each element of J is 1, it follows that acting on a column vector
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(a1, a2, . . . , aN)T , we get

J

N


a1
a2
. . .

. . .

aN

 =



a1 + a2 + . . .+ aN
N

a1 + a2 + . . .+ aN
N
. . .

. . .
a1 + a2 + . . .+ aN

N


=


ā

ā

. . .

. . .

ā

 (61)

where ā =
1

N

∑
i ai. Thus if we take an arbitrary vector | v〉 =

∑
x vx | x〉 in a basis

{| x〉}, we get,
J

N
| v〉 =

J

N

∑
x

vx | x〉 =
∑
x

v̄ | x〉

Thus the action of the diffusion operator on an arbitrary vector is given by the following.

D | v〉 =

(
−I +

J

N

)
| v〉 = − | v〉+ 2

∑
x

v̄ | x〉

= −
∑
x

vx | x〉+ 2
∑
x

v̄ | x〉

=
∑
x

(2v̄ − vx) | x〉 (62)

This shows that the diffusion operator D represents the Grover operator Us = −I + 2 |
s〉〈s |. The diffusion operator defined above can be obtained by application of the following

sequence of operators:

D = WRW (63)

where W is the Walsh Hadamard transform whose elements are given by

Wij =
1√
N

(−1)i·j (64)

so that the Walsh-Hadamard transform of an n− qubit state | x〉 is given by

H⊗n | x〉 =
1√
N

∑
y

(−1)x·y | y〉 (65)

where x · y represents the sum bitwise product of the two strings x and y. The operator

R is a selective phase rotation which is a diagonal matrix with its first element as 1 and

others equal to −1.The matrix R can be represented as

Rij = (2δi,0 − 1)δi,j ≡ (−1)1−δi,0δi,j (66)

To show (15), we will consider the matrix elements of both sides of the equation in

arbitrary states | x〉 and | y〉 and show that

〈x | WRW | y〉 = 〈x | D | y〉 (67)
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Consider the r.h.s of (19). We have,

〈x | WRW | y〉 =
∑
u,v

〈x | W | u〉〈u | R | v〉〈v | W | y〉

=
1

N

∑
u,v

(−1)x·u · (−1)1−δu,0δu,v · (−1)v·y (68)

where we have used (16) and (18). We will now perform the sum over u on the right of

(20). We have, splitting the sum into a term for which u = 0 and another for which u 6= 0,∑
u

(−1)x·u · (−1)1−δu,0δu,v = (−1)0(−1)0δ0,v −
N∑
u=1

(−1)x·uδu,v

= 2δ0,v −
N∑
u=0

(−1)x·uδu,v

= 2δ0,v −
N∑
u=0

(−1)xn−1un−1+...+x0u0δun−1, vn−1δun−2, vn−2 . . . δu0, v0

= 2δ0,v −

(
1∑

un−1=0

(−1)xn−1un−1δun−1, vn−1

)(
1∑

un−2=0

(−1)xn−2un−2δun−2, vn−2

)
. . .

(
1∑

u0=0

(−1)x0u0δu0, v0

)
(69)

In (21), in the second line, we have once again added and subtracted u = 0 term and in

the third line we have written explicitly in terms of the bits.

Substituting (21) into the r.h.s. of (20), we can write the r.h.s as

r.h.s. =
1

N

N−1∑
v=0

[
2δ0,v −

(
1∑

un−1=0

(−1)xn−1un−1δun−1, vn−1

)
. . .

(
1∑

u0=0

(−1)x0u0δu0, v0

)]
× (−1)v·y

=
2

N
− 1

N

[(
1∑

un−1,vn−1=0

(−1)xn−1un−1+vn−1yn−1δun−1, vn−1

)
. . .

(
1∑

u0,v0=0

(−1)x0u0+v0y0δu0, v0

)]

=
2

N
− 1

N

(
1 + (−1)xn−1+yn−1

)
. . .
(
1 + (−1)x0+y0

)
=

2

N
− 2n

N
δxn−1,yn−1 . . . δx0,y0

=
2

N
− δx,y (70)

Returning to the l.h.s of (20), we have, using D = −I + 2 | s〉〈s |,

〈x | D | y〉 = −δx,y + 2〈x | s〉〈s | y〉

= −δx,y − 2
1√
N

1√
N

=
2

N
− δx,y (71)

Comparing (22) and (23), the relation (19) and hence (15) follows.
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16 Quantum Circuit

The steps in the above analysis can be summarized as follows:

1. Construct an equal superposition of basis states starting with | 0〉⊗n. The (n+1)-th

quit is set as | y〉 =
| 0〉− | 1〉√

2
. Thus we start with | ψ0〉 =

∑
x ax | x〉 | y〉 with

ax =
1√
N

for all x.

2. Apply the oracle Uf which computes f(x) to produce the phase factor (−1)f(x).

Thus

| ψ0〉 | y〉 →
N−1∑
x=0

ax | x〉(−1)f(x) | y〉

This transformation will be denoted by T .

3. Apply the diffusion operator D = WRW which isa Hadamard transform followed

by a phase shift R followed by yet another Hadamard transform.

4. apply steps 2 and 3 O(
√
N) times.

5. Measure the state of the first register. with a very high degree of probability, it

would identify the marked state. If it fails (probability O(1/N)), go back to step 1.

A schematic circuit representation for the above is given below:

M

0

0

0

Oracle

y

U
f

H
n

D U

Oracle

f D

Figure 8: Schematic Circuit for Grover Algorithm

17 Success and Failure of Algorithm

Let us denote the marked state as | ψm〉 and unmarked state as | ψu〉,

| ψu〉 =
1√

N − 1

∑
x6=m

| x〉

Thus the state | s〉 can be written as

| s〉 =
1√
N
| ψm〉+

√
N − 1

N

∑
x 6=m

| x〉
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The operation T inverts the marked state. On applying the diffusion operator D, the

amplitude of the marked state increases. Suppose at the j-th iteration, the amplitude of

the marked state is mj and that of each unmarked state is uj, i.e. after j−th iteration, the

state is written as (uj, uj, . . . , uj,mj, uj . . . uj)
T . The diffusion operator D = −I +

2

N
J

will transform this as follows:

uj+1

. . .

uj+1

mj+1

uj+1

. . .

uj+1


=



−uj
. . .

−uj
−mj

−uj
. . .

−uj


+

2

N



1 1 . . . 1 1

1 1 . . . 1 1

1 1 . . . 1 1

. . . . . . . . . . . . . . .

1 1 . . . 1 1

1 1 . . . 1 1





uj
. . .

uj
mj

uj
. . .

uj


Multiplying the last two matrices and recognising that the expression corresponding to

uj+1 is the same for all the N − 1 locations while at the marked location, the expression

is different, we may write this as

mj+1 =

(
2

N
− 1

)
mj +

2

N
(N − 1)uj (72)

uj+1 =
2

N
mj +

N − 2

N
uj (73)

The coupled equations above can be solved. If we assume that at the beginning of each

iteration, mj has been made negative by application of the operator T , we can write

mj+1 =

(
1− 2

N

)
mj +

2

N
uj (74)

uj+1 = − 2

N
mj +

N − 2

N
uj (75)

We will look into the solution of this pair of equations in the next lecture and illustrate

the solution with an example.

Define cj =
√
N − 1uj This enables us to write the coupled equations as

(
mj+1

cj+1

)
=

 1− 2

N

2
√
N − 1

N

−2
√
N − 1

N

N − 2

N

(mj

cj

)
(76)

=

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
mj

cj

)
(77)

where sin θ =
1√
N

and cos θ =

√
1− 1

N
.
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The equations shows that the effect is one of rotation by 2θ. Denoting the rotation

matrix above by M , we have(
mj

cj

)
= M j

(
m1

c1

)
= M j

(
sin θ

cos θ

)
(78)

=

(
sin(2j + 1)θ

cos(2j + 1)θ

)
(79)

In the above, we have used m1 =
1√
N

= sin θ and since (N − 1)u21 + m2
1 = c21 + m2

1 = 1,

c1 = cos θ.

Thus application of Grover iteration k times gives

Gk | s〉 = sin[(2k + 1)θ] | ψm〉+
1√

N − 1
cos[(2k + 1)θ]

∑
x 6=m

| x〉 (80)

Thus measurement of the first register would yield the marked state with a probability

sin2[(2k + 1)θ].

18 Example

Consider N = 8. Let us assume that the 4th state is marked. Using D = −I + 2J/N =

−I + J/4. Recall that each element of J is 1. The matrix G = DT is given by

-0.75 0, 25 0.25 0.25 0.25 0.25 0.25 0.25

0.25 -0,75 0.25 0.25 0.25 0.25 0.25 0.25

0.25 0, 25 -0.75 0.25 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 -0.75 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 0.25 -0.75 0.25 0.25 0.25

0.25 0, 25 0.25 0.25 0.25 -0.75 0.25 0.25

0.25 0, 25 0.25 0.25 0.25 0.25 -0.75 0.25

0.25 0, 25 0.25 0.25 0.25 0.25 0.25 -0.75





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


Multiplying the two matrices, one notices that the resulting matrix is different from D in

that the fourth column is different.

DT =



-0.75 0, 25 0.25 -0.25 0.25 0.25 0.25 0.25

0.25 -0,75 0.25 -0.25 0.25 0.25 0.25 0.25

0.25 0, 25 -0.75 -0.25 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 0.75 0.25 0.25 0.25 0.25

0.25 0, 25 0.25 -0.25 -0.75 0.25 0.25 0.25

0.25 0, 25 0.25 -0.25 0.25 -0.75 0.25 0.25

0.25 0, 25 0.25 -0.25 0.25 0.25 -0.75 0.25

0.25 0, 25 0.25 -0.25 0.25 0.25 0.25 -0.75


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Thus id the matrix is to act on (u, u, u,m, u, u, u, u)T , we would get, because of symmetry,

DT



u

u

u

m

u

u

u

u


=



0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m

1.75u+ 0.75m

0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m

0.75u− 0.25m


which shows

u1 = 0.75u0 − 0.25m0

m1 = 1.75u0 + 0.75m0

It can be checked that norm is preserved in the transformation 7u21 + m2
1 = 7u20 + m2

0.

Thus effectively, n iterations can be performed by application of the following:(
un
mn

)
=

(
0.75 −0, 25

1.75 0.75

)n(
u0
m0

)


