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1 Introduction

In the last lecture, we talked about various quantum circuits. We had discussed the

essential elements of a quantum circuit which consists of input and out registers, some

ancilla bits, gates representing unitary operators, oracles and measuring apparatus. We

pointed out that the measurement has a special place in quantum computing, as unlike

classical computers, measurement in a quantum computer gives one of many possible

outputs with a certain probability. One of the tasks of a quantum computer is to extract

relevant information from such probabilistic measurements. We also discussed realization

of several classical logics using quantum processes.

In this lecture we will discuss two aspects of quantum computing and circuits which are

essentially quantum phenomenon with no classical analogue. These are quantum No-

cloning theorem and teleportation.

2 Quantum No-Cloning Theorem

Before discussing the theorem, consider what is meant by copying something, for instance

in a device such as a Xerox machine. We need the original to be copied, a blank paper on

which to make a copy of the original, run the pair through the machine to get back the

original and an identical copy of the same in place of the blank used. We use the same

concept in defining copy of a quantum state. We would start with the state to be copied,

a standard state (a blank) on which the machine would copy the original state to get back

the original state and a copy in place of the blank state. Since quantum operations are
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unitary, we ask the question, does a unitary operator exist which acting on the former

pair gives the desired output? Stated mathematically, can one find an operator U such

that we have

U | ψ〉⊗ | s〉 =| ψ〉⊗ | ψ〉?
In the above | s〉 stands for the standard or the blank state, which could, for instance,

be the null state | 0〉. One must make an observation here. Like in our analogy of the

Xerox machine, if such an operator does exist, it should be able to clone different states

and not just be special for some particular state just as we do not have different Xerox

machines for copying different originals.

Supposing such cloning were possible and there existed such an operator U . We would

then have corresponding to its application on two different states | ψ〉 and | φ〉,

U | s〉⊗ | ψ〉 =| ψ〉⊗ | ψ〉
U | s〉⊗ | φ〉 =| φ〉⊗ | φ〉

If this were possible, we would have

〈ψ |φ〉 = 〈ψ | (〈s |s〉 | φ〉
= 〈ψ, s |s, φ〉
= 〈ψ, s |U †U | s, φ〉

wherein in the above, in the first line we have introduced an identity 〈s |s〉 using the fact

that the standard states are normalized, in the second line we have rewritten the above

using the two qubit notation and in the last line, we have formally introduced the operator

U stated above which by its unitarity satisfies U †U = 1. We now let the operator U act

to its right and U † act to its left, giving

〈ψ |φ〉 = 〈ψ, ψ |φ, φ〉 = 〈ψ |φ〉 × 〈ψ |φ〉 = 〈ψ |φ〉2

where the ordering of the scalar product is immaterial. This shows that the scalar

product of the states | ψ〉 and | φ〉 must be either 1 or zero- in other words, they should

be either the same state or be two orthogonal states. This shows, there does not exist

a unitary operator which can clone arbitrary, non-orthogonal states. This theorem has

significance in various aspects of quantum communication. For instance, we will see in

later lectures that one of the standard protocols in classical communication is to trans-

mit multiple copies of a message so that the error during communication is minimized.

No-Cloning theorem makes this protocol not useful in quantum communication. In the

following we discuss a communication protocol in which an arbitrary state is to be sent

to a receiver without a physical transfer of the state from sender to the receiver.

3 Quantum Teleportation

Teleportation has been for long in the folklore of science fiction. In the television serial

Star-Trek, one finds the captain of the ship Captain Kirk being energized at one place and
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reassembled in material form in another place. The object of teleportation is to transfer

a state from one point to another without its having travelled continuously between the

two points. This would not be possible in classical communication. In quantum com-

munication we use a protocol between the sender Alice and receiver Bob, who share an

entangled pair, which we will take as one of the four Bell states. Alice, in addition, has in

her possession an arbitrary single qubit quantum state α | 0〉 + β | 1〉 which she intends

to be transported to Bob. Alice can only perform local operations on her qubits and Bob

on his. They may use classical channel for communicating result of a measurement but

not physically transport a state. However, Alice cannot give such information to Bob de-

scribing the state she wants Bob to have a copy of, as such description would, in general,

require infinite amount of information transfer as the coefficients α and β are complex and

exact description of these two complex numbers with possibly irrational real and imagi-

nary parts, require infinite amount of binary information. Further, in case Alice does not

know the exact values of α and β, she herself cannot get these by measuring locally as

this would make the state collapse to one of the basis states obliterating such information.

Let us assume that Alice and Bob share one qubit each of the Bell state

| Ψ〉 =
1√
2

(| 00〉+ | 11〉) which is an entangled state. We will assume that Alice has the

first qubit of this pair and Bob the second. Since there are in all three qubits, two with

Alice and one with Bob, we will number these as follows: the qubit which needs to be

transported α | 0〉 + β | 1〉 will be labelled as qubit 1, Alice’s part of the entangled state

as qubit 2 and Bob?s qubit as bit 3. Remember that the qubits 2 and 3 are entangled.

The teleportation circuit is shown in the diagram below.

Ψ

H

X Z

& Measurements
Alice’s Encoding

Classical
channel

Bell State

Ψ

Alice makes the state | Ψ〉 interact with her part of the entangled qubit by first doing

a CNOT operation with the state | Ψ〉 (the first qubit) as the control and the qubit 2 as

the target. This will make the three qubits transform as follows.

CNOT

[
(α | 0〉+ β | 1〉)⊗ 1√

2
(| 0〉⊗ | 0〉+ | 1〉⊗ | 1〉)

]
=

1√
2

[α (| 000〉+ | 011〉) + β (| 110〉+ | 101〉)]

where in the above, the qubits are numbered as indicated above. Alice now subjects the

first qubit to a Hadamard gate. Remembering that Hadamard gate would transform | 0〉
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to
1√
2

(| 0〉+ | 1〉) and | 1〉 to
1√
2

(| 0〉− | 1〉). We would then get

1

2
[α (| 000〉+ | 100〉+ | 011〉+ | 111〉) + β (| 010〉− | 110〉+ | 001〉− | 101〉)]

We rearrange the terms by writing Alice?s qubits separately from Bob?s qubit. Other

than for an overall factor of 1/2, the above state is

| 00〉(α | 0〉+ β | 1〉)+ | 01〉(α | 1〉+ β | 0〉)+ | 10〉(α | 0〉 − β | 1〉)+ | 11〉(α | 1〉 − β | 0〉)

If now, Alice makes a measurement of her qubits (both first and the second qubits) she

will get four possible results | 00〉, | 01〉, | 10〉 and | 11〉 with equal probability of 1/4

each. The result of her measurement can be encoded as two classical bits 00, 01,10 and

11 respectively. She can now communicate to Bob, using a classical channel, the result of

her measurement using such classical bits. On getting information from her, Bob would

initiate some processing at his end to convert his qubit to the qubit Alice wanted him

to have. Remembering that Bob’s qubit would have collapsed to the state multiplying

Alice?s qubits corresponding to her measurement, these actions are as follows:

1. If Alice’s measurement gives 00, Bob already has the state | Ψ〉. In this case he does

nothing.

2. If Alice’s measurement gives 01, Bob’s state has collapsed to the state α | 1〉+β | 0〉.
In such a case Bob applies an X-gate to his qubit which will interchange the states

| 0〉 and | 1〉 and convert Bob’s state to the desired form.

3. If Alice’s result is 10, Bob’s state has collapsed to the state α | 0〉 − β | 1〉. In such

a case Bob applies a Z-gate on his qubit to get | Ψ〉. Finally,

4. If Alice’s result is 11, Bob’s state has collapsed to the state α | 1〉 − β | 0〉. In such

a case Bob first applies a X-gate converting his state to α | 0〉 − β | 1〉. He now

applies an Z-gate to recover | Ψ〉, the desired state.

There are two questions that arise in the above. Firstly, nowhere in our discussion we

mentioned what is the distance between Alice and Bob; they could, for instance, be

separated by space-like distances, in which case we could be violating the principle

of relativity whereby communication with a speed greater than that of light is not

possible. However, recall that in the teleportation protocol, there is a step in which

Alice must communicate result of her measurement to Bob using a classical channel.

This is obviously not possible with a speed greater than that of light. Second

question that arises is have we, in the process, copied a quantum state, in violation

of the No-Cloning theorem? The answer again is no because if one looks at what

Alice has with her in place of the state | Ψ〉, one finds that she has either the

state | 0〉 or the state | 1〉. Likewise Bob has also lost his original qubit while

reconstructing the state | Ψ〉.


