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1 Introduction

In our discussion on postulates of quantum mechanics we described the salient points of

the Copenhagen interpretation to comprise of

1. description of the state of a system as a ray in the Hilbert space,

2. relationship between the operators and observables,

3. the unitary character of the time evolution of the quantum states, and,

4. the collapse of a state during the process of measurement.

We mentioned that the quantum description of a state has two distinct regime, one of

unitary evolution when the system is not under observation and a second a non-unitary

process when the system interacts with a measuring apparatus. We pointed out that

when we measure some physical observable in a pure system, the result that we obtain is

probabilistic which projects out one of the possible eigenstates of the operator that is being

measured. Measurement, thus, is an essential postulate of quantum mechanics. It must,

however, be pointed out that quantum mechanics postulates that possible results arise

with predetermined probabilities but does not provide a mechanism how a particular result

actually arises. In this lecture and the next we will discuss the measurement postulate

and its various ramification.

2 Measurement Postulates

We have seen that when we make a measurement of a state, the state to which it will

collapse would depend on the basis in which we measure the system. For instance, if
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we have a state α | 0〉 + β | 1〉 which is prepared in the computational basis, it would

collapse to a state | 0〉 with a probability | α |2 and to a state | 1〉 with a probability

| β |2, provide, the measurement also is made in the computational basis. If the same state

is measured in, for instance, the diagonal basis, the state would collapse to | +〉 with a

probability | α+β |2 /2 and to a state | −〉 with a probability | α−β |2 /2. The process of

measurement described in this manner is confusing and it is more elegant to describe it in

terms of a mathematical formalism of which the projection operators happen to be special

cases. The mathematical formulation of the process of measurement is stated in the form

of a separate postulate of quantum mechanics. The essential features of measurement

postulates are as follows:

1. A measurement in quantum mechanics is described by a set of operators {Mm},
where m is an index representing the possible results of the measurement process

and if there are n number of possible results, then m could take values from 1 to n.

2. The probability of observing a particular outcome m is given by 〈ψ |M †
mMm| ψ〉.

3. Since there are only n possibilities, the set of operators must satisfy completeness

relation
∑n

m=1M
†
mMm = I. Here I is the identity operator.

4. According to the quantum postulates, after one has made a measurement and got a

specific result m, the system would have collapsed to a state which is an eigenstate of

the operator corresponding to eigenvalue m and the (normalized) post-measurement

of the system would be
Mm | ψ〉√
〈ψ |M †

mMm| ψ〉

We will now discuss two specific cases of measurements.

3 Projective or Von-Neumann Measurement

A concept which is central to the principle of measurement and wave function collapse is

that the process of measurement is repeatable, i.e., if one repeats the measurement on a

system after a measurement has been performed on the system (but before the system

has interacted with other devices), the result of the measurement will be the same. This

implies that the process of measurement has not disturbed the pre-existing state of the

system and what one measures in a process of measurement is the property associated with

the state of the system which exists before the measurement was performed. The wave

function collapse does not worry about such details but treats the process of measurement

as a black box which measures the pre-existing state of the system. (This presumption

is not tenable; for instance, when one measures the momentum of a particle through a

collision experiment, the momentum of the target particle after measurement is not the
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same as it was before such a measurement.)

To determine the state | ψ〉, we proceed as follows. We measure a property A and obtain

a value. If the corresponding operator has a non-degenerate spectrum. we simply take a

large number of identically prepared state of the system and measure the same property

and obtain a distribution of the occurrence of N mutually exclusive values from which

we reconstruct | ψ〉 using the fact that the state of the system before a measurement

was a linear combination of the eigenstates of the operator corresponding to the physical

observable that is measured.

If the eigenvalue is degenerate, one must find a ‘compatible operator’ B̂ (which commutes

with Â) and determine an eigenstate state | nA, nB〉 and obtain the distribution of the

corresponding eigenstates. The simultaneous measurement of a compatible set of physical

properties determine a maximal set for a state vector with N mutually exclusive outcome.

Mathematically, a maximal set corresponds to defining N one dimensional projectors Pn
(which, in this case is the measurement operator Mn) having the following property

P †m = Pm PmPn = Pmδm,n;
∑
m

Pm = I (1)

Since P 2
m = Pm, the probability in this case is given by p(m) = 〈ψ |Pm| ψ〉. Since its

eigenvalues are 0 and 1, P is a positive operator. If we measure a physical variable

M with non-degenerate eigenvalues, λα is measured. This is equivalent to the spectral

resolution of the corresponding operator M̂

M̂ =
n∑

m=1

mPm

The above set of projectors constitute a von Neumann or projective measurement.

It may be observed these operators constitute a special set of the general measurement op-

erator defined above with the additional constraints which follow from the representation

of Pm in terms of the orthogonal basis set (corresponding to the eigenstate of the operator

for the observable that is being measured) which it projects, i.e. Pm =| ψm〉〈ψm |.

• They are hermitian, which follows from the representation in terms of the states

which they project, since P †m = (| ψm〉〈ψm |)† =| ψm〉〈ψm |.

• They are idempotent as PmPm = (| ψm〉〈ψm |)(| ψm.〉〈ψm |) = (| ψm〉〈ψm |) = Pm.

• They are orthogonal since PmPn = (| ψm〉〈ψm |)(| ψn〉〈ψn |) = (| ψm〉δm,n〈ψn |) =

Pmδm,n.

To illustrate, consider the following example of the state α | 0〉 + β | 1〉 prepared in the

computational basis having a matrix representation

(
α

β

)
. We define the measurement
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operators to be M0 =| 0〉〈0 | and M1 =| 1〉〈1 |. The probability of getting the state | 0〉
is given by

p(0) = 〈ψ |M0| ψ〉
= 〈ψ |0〉〈0 |ψ〉
= (α∗〈0 | +β∗〈1 |) | 0〉〈0 | (α | 0〉+ β | 1〉)
=| α |2

Likewise, the probability of getting the state | 1〉 is p(1) =| β |2.
Suppose the result of the measurement happens to be | 0〉, the post measurement state is

given by
M0 | ψ〉√
〈ψ |M0| ψ〉

=
| 0〉〈0 | (α | 0〉+ β | 1〉

| α |
=
α | 0〉
| α |

= eiϕ | 0〉

Thus the post-measurement state is the state | 0〉 itself but for an immaterial global phase

factor.

A special case of the projective measurement is when the measurement is done in a basis,

such as the example of the computational basis shown above. Projective measurements

may not be restricted to basis but may be performed in any orthogonal states in the

Hilbert space. If we measured the state given above in the diagonal basis, instead of

the computational basis, we must first express the given state in terms of the new basis

{| +〉, | −〉}, where

| +〉 =
| 0〉+ | 1〉√

2
; | −〉 =

| 0〉− | 1〉√
2

in terms of which

| 0〉 =
| +〉+ | −〉√

2
; | 1〉 =

| +〉− | −〉√
2

and the state | ψ〉 can be written as

| ψ〉 =
α + β√

2
| +〉+

α− β√
2
| −〉

The probabilities in this case are given by p(+) =
| α + β |2

2
and p(−) =

| α− β |2

2
.

Suppose we get the state | +〉 on measurement in this basis. We can find the post

measurement state in an identical manner

√
2
M+ | ψ〉
| α + β |

= eiϕ | +〉

At this state, if we made repeated measurement on this post-measurement state, we would

continue to get the same state over and over again as the state having already collapsed

to the basis will continue to be there.
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We now extend our ideas to multi-qubit case. We consider the case of two qubits here.

Generalization to more than two qubits is straightforward. Let

| ψ〉 = α | 00〉+ β | 01〉+ γ | 10〉+ δ | 11〉

In this case one can think of different measurements. Suppose we are interested in mea-

suring only the first qubit, irrespective of what the state of the second qubit might be. in

that case, the measurement operator is given by (here the first element of the two qubit

refers to the first qubit and the second element to the second qubit)

M0 = M00 +M01

=| 00〉〈00 | + | 01〉〈01 |
=| 0〉〈0 | (| 0〉〈0 | + | 1〉〈1 |)
=| 0〉〈0 | ⊗I2

where I2 is the identity operator which acts on the second qubit. The probability of

getting the first qubit to be | 0〉 is given by

〈ψ |M0| ψ〉 = 〈ψ | (| 0〉〈0 | ⊗I2) | ψ〉
=| α |2 + | β |2

In the same way if we calculated the probability for the first qubit to be | 1〉 we would

get it to be | γ + δ |2.
In the preceding, we talked about the general measurement theory in quantum me-

chanics. we discussed the special case of projective or Von Neumann measurement for

pure states. In this lecture we would first generalize the above to the case of mixed states

where the description is in terms of the density matrix rather than the state vector. Later

in this lecture we will discuss a non-projective measurement known as the POVM or the

Positive Operator Valued Measure.

Before proceeding, it is convenient to state the quantum postulates as modified for the

case of mixed systems. They are

1. The ensemble is described by a density matrix ρ in the Hilbert space.

2. The time evolution of the density matrix is given by the Liouville equation.

3. If a measurement of the system is made by a set of measurement operators {Mm},
the probability of a particular outcome m is given by Tr(M †

mMmρ). The post-

measurement state of the system is given by the new density matrix
M †

mρMm

Tr(M †
mMmρ)

.
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4 Measurement in a mixed state

Recall our discussion on the density operator where the operator ρ was defined by a

weighted sum of the pure states in an ensemble

ρ =
∑
i

pi | ψi〉〈ψi |

where pi is the classical probability of occurrence of the state | ψi〉 in the ensemble. If

we consider a basis in this Hilbert space {| ei〉}, then we may write | ψi〉 =
∑

j Cij | ej〉,
where Cij is the Born probability, given by 〈ej |ψi〉. The probability of finding the state

| ψi〉 in the basis state | ej〉 is simply given by | Cij |2. Thus the probability of observing

the system in the basis state basis state | ej〉 is given by multiplying the probability of

picking up the state | ψi〉 from the ensemble (which is pi) with the probability of finding

the the state | ψi〉 in the basis state | ej〉 and then summing over all states | ψ〉 of the

system. This is given by

p(| ej〉) =
∑
i

pi | 〈ej |ψi〉 |2

=
∑
i

pi〈ej |ψi〉〈ψi |ej〉

= 〈ej |(
∑
i

pi | ψi〉〈ψi |)| ej〉

= 〈ej |ρ| ej〉 (2)

where ρ =
∑

i pi | ψi〉〈ψi |.
Let us recall our formulation of quantum mechanics using density operators. Let the

density matrix of the system be ρ. The probability of finding the system in a state | n〉 is

given by

pn = Tr(ρ | n〉〈n |) = Tr(ρPn) (3)

It is easy to see that the probability found in (2) is the same as that of (3). To see

this, examine the following, considering the fact that trace can be calculated in any

representation. Considering a basis set {| ei〉}

pn = Tr(ρPn)

=
∑
i

〈ei |ρ| n〉〈n |ei〉

=
∑
i

〈ei |ρ| n〉δi,n

= 〈n |ρ| n〉
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Defining the post-measurement density matrix by ρ′ =| ψpost−measure〉〈ψpost−measure |

ρ′ =
Pn | ψ〉〈ψ | P †n
〈ψ |Pn| ψ〉

=
PnρPn

Tr(ρPn)
(4)

Given a complete set of projectors, the probability of a particular result is given by

taking the trace of the product of the pre-measurement density matrix with the projection

operator for the corresponding event.

Pr(m) = Tr ρPm = 〈ψ |Pm| ψ〉

the last relation in the above equation is valid for pure states only. The completeness of

the set of the projection operators ensures probability conservation,∑
m

Pr(m) =
∑
m

Tr ρPm = Tr ρ
∑
m

Pm = Tr ρ = I

Example : Let | ψ〉 = α | 0〉 + β | 1〉. Suppose we we measure the z component of

the spin, using the spectral decomposition of the corresponding operator σz =| 0〉〈0 | − |
1〉〈1 |, we have using M0 =| 0〉〈0 |, ρ =| ψ〉〈ψ |= (α | 0〉+ β | 1〉)(α〈0 | +β〈1 |), we get

Tr(M †
0M0ρ) = Tr [| 0〉〈0 |0〉〈0 | (α | 0〉+ β | 1〉)(α∗〈0 | +β∗〈1 |)]

= Tr [| 0〉α(α∗〈0 | +β∗ | 1〉)] =| α |2

where we have used the orthonormality of the states and used the fact that Tr(| a〉〈b |) =

〈b |a〉. The post measurement state of the system is easily obtained by observing that

M0ρM
†
0 =| α |2| 0〉〈0 |

so that

ρpost−measurement =
M0ρM

†
0

Tr(M †
0M0ρ)

=| 0〉〈0 |

Another interesting that emerges is what happens to the system if we make yet an-

other measurement on the system after one measurement has been made. Obviously, once

the system has collapsed to a particular state when a measurement has been made in one

basis, it would continue to reman in the same state on repeating the measurement in

the same basis. However, this does not remain true if one makes a change of basis. To

illustrate, let us consider the same example as before and assume that a measurement in

the computational basis has been made and we found the state collapsing to | 0〉 with

a probability | α |2. If we now make another measurement on the resulting state in the

diagonal basis, as the state | 0〉 can be expressed as
| +〉+ | −〉√

2
, the state would collapse

to | +〉 and | −〉 with equal probability. Thus the result would be to get the state | +〉
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with probability
| α |2

2
and a state | −〉 with the same probability. If however, we had

measured the original state first in the diagonal basis, we would have go the state | +〉

with a probability
| α + β |2

2
and the state | −〉 with the probability

| α− β |2

2
. Suppose

we got the state to be | +〉 and we now measure the state in the computational basis. We

would get the states | 0〉 and | 1〉 with equal probability. Thus the probability of getting

the result +, 0 is
| α + β |2

4
which is different from the probability | α |2 of getting 0,+.

The process of measurement is a postulate in quantum mechanics because it is a result

of interaction between the system and the measuring apparatus, which cannot be treated

quantum mechanically. The measurement process described above is a direct measure-

ment. It may be noted that as a consequence of measurement, all information about the

pre-measurement state of the system is obliterated. In a more general measurement, the

system is allowed to interact with an external system (the ancilla) and this joint system

develops unitarily.

5 POVM

Another special class of measurement that we consider is the POVM measurement, which

is an acronym for Positive Operator Valued Measure, a name whose origin is not clear

and need not concern us. This is a non-projective and non-orthogonal measurement.

(Projective operators, are special cases of this class). Further, for a d- dimensional Hilbert

space, there are exactly d orthogonal projectors while in POVM they may be more than

the dimensionality.

Consider a composite system in the Hilbert space HA ⊗ HB. Assuming that the joint

system is prepared in a sate ρA ⊗ ρB, we perform a joint measurement of the physical

property MAB in the Hilbert space of HA ⊗HB. Denoting the complete set of projectors

of the combined space by Pm, the probability of outcome m is

p(m) = TrATrB [Pm(ρA ⊗ ρB)] = TrA[EmρA] (5)

where

Em = TrB[PmρB] (6)

Comparing the expression (5) with (2), we find that Em defined by (6) is the projection

operator corresponding to the measurement of our system of interest A from the composite

system (AB). The set of operators {Em} is known as POVM. These operators act on HA.

It can be seen that they are indeed a set of projectors. In terms of matrix elements, we

write

(Em)i,j =
∑
µν

(Pm)iµ,jν(ρ
B)µ,ν
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1. Hermiticity :

(Em)∗i,j =
∑
µν

(Pm)∗iµ,jν(ρ
B)∗µ,ν

=
∑
µ,ν

(Pm)jν,iµ(ρB)ν,µ

= (Em)ji (7)

In deriving above, we have used hermiticity of Pm and of ρB.

2. Em is a positive operator. Consider a basis in which ρB is diagonal : ρB =
∑

µ pµ |
µ〉〈µ |. We have

〈ψA |Em| ψa〉 =
∑
µ

pµ〈ψ ⊗ µB |Pm| ψA ⊗ µB〉 ≥ 0

since PM is a positive operator.

3. Completeness : ∑
m

Em = TrB[
∑
m

(Pm)ρB] =
∑
m

Pm × TrBρ
B = IA

since
∑

m Pm = IAB and TrBρ
B = 1.

However, the projectors Em are not orthogonal, i.e. EmEn 6= δm,n. We define a set of

POVM as any set of operators for which Em = E†m, Em ≥ 0 and
∑

mEm = I. Since the

measurement operators {Mm} act on a quantum system in the state | ψ〉 so that the post

measurement state is
Mm | ψ〉√
〈ψ |M †

mMm| ψ〉
, the above properties will be satisfied if we define

Em = M †
mMm. The probability of measurement is p(m) = Tr(Emρ). If a measurement

is made but not read, the state goes to ρ → ρ′ =
∑

mMmρMm. If it is read, it becomes

ρ′ =
MmρM

†
m

Tr[MmρM
†
m]

. Reading is an important part of any measurement because until a

measurement has been made but not read, the state, in principle, remains in a linear

combination of possible results but once the reading is done, it collapses into the state

that is read. (Reading is essentially a process of interaction with equipment such as a

meter, an oscilloscope etc.)

Example

Suppose Alice gives Bob a quantum state prepared in either | ψ1〉 =| 0〉 and | ψ2〉. Bob

decides to use a POVM basis to find out what the state was. (This is an example from
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Nielsen and Chuang’s book). Define,

E1 =

√
2√

2 + 1
| 1〉〈1 |

E2 =
1

2

√
2√

2 + 1
[(| 0〉− | 1〉)(〈0 | −〈1 |)]

E3 = I − E1 − E2

Clearly, these are not orthogonal as we are in two dimensional space in which we have

defined three operators. The interesting point about this case is it allows us to identify

non-orthogonal states correctly with some probability without ever wrongly identifying a

state.

Suppose Alice sent Bob a state randomly, which could be either | 0〉 or the state
| 0〉+ | 1〉√

2
.

Bob cannot distinguish these states by making a measurement in the computational basis

as the second state has a projection along both | 0〉 and | 1〉, which means that only when

he measured the state to be | 1〉, he may be sure that it was the second state but would

never be able to identify the first state correctly. Thus in a random situation, he would

only be correct 25% time.

The situation improves if he uses POVM instead. If Bob had received | 0〉, he will observe

E2 with zero probability since 〈0 |E1| 0〉 = 0. Hence if his measurement results in E1, he

will be able to identify the state as | ψ2〉. Similarly, if his measurement gives E2, he will be

able to identify it as | ψ1〉. In case his measurement results in E3, no definite conclusion

can be made. Thus if he identifies a state he is never wrong but may not always be able

to make a definite statement on some occasions. .


