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Introduction

1 Introduction

We have, in the earlier lectures dealt with qubit, the smallest unit of quantum infor-

mation. It was pointed out that unlike the classical bits, the qubits can be in a linear

superposition of the basis states which provides quantum computation with the power of

inherent parallelism. In this lecture, we will extend the concept of a single quit to the

case of multi-qubits.

2 Composite Systems:

Consider a composite system consisting of two sub-systems A and B. Let the Hilbert space

of A be HA and that of B be HB. The space of the composite system is HA⊗HB = HAB.

Suppose {| α〉A} be a basis in HA and {| β〉B} a basis for HB. We define the basis of HAB

to be the composite set | α, β〉AB. The orthonormality relationship for the basis is

AB〈α′, β′ |α, β〉AB = δα,α′δβ,β′

We define an operator in this composite space as MA⊗NB which acting on a state of

the composite system

MA ⊗NB | ψ, ϕ〉AB = MA | ψ〉A ⊗NB | ϕ〉 =
∑

(MA)ψ,α | α〉(NB)ϕ,β | β〉

Let us look at two qubit system. The corresponding cbits are 00, 01, 10 and 11. The

quantum states for two qubits is

| ψ〉 = α00 | 00〉+ α01 | 01〉+ α10 | 10〉+ α11 | 11〉

1
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subject to | α00 |2 + | α01 |2 + | α10 |2| α11 |2= 1.

Suppose we measure the first qubit and get 0 (with probability | α00 |2 + | α01 |2).
The post measurement state is

| ψ′〉 =
α00 | 00〉+ α01 | 01〉√
| α00 |2 + | α01 |2

Note that not all two qubit states can be written as a product of single qubit states. A

particularly important set of such stares is known as Bell states which are given by

| ψ+〉 =
| 01〉+ | 10〉√

2

| ψ−〉 =
| 01〉− | 10〉√

2

| φ+〉 =
| 00〉+ | 11〉√

2

| ψ−〉 =
| 00〉− | 11〉√

2

Suppose we measure the first qubit of one of the members of the above states, say,

| ψ+〉. If we get 0 as a result of the measurement, it could only have come from the

component | 01〉, which would be the normalized post-measurement state of the system.

However, note that as a result of this measurement, even though we did not measure it, the

state of the second qubit also got determined to be | 1〉. This shows that the measurement

outcomes are correlated. The states in the example of Bell basis given above as then said

to be entangled.

3 Matrix Basis in the space of two qubits

We have seen that in the Hilbert space C2 for one qubits, we could define a column

vector representation for the states. One of the possible basis in this space was the

computational basis : | 0〉 =

(
1

0

)
and | 1〉 =

(
0

1

)
. We may use this to define a basis

for the higher dimension as well. For instance, the computational basis for the two qubit
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states are obtained as the matrix direct product of the one qubit basis states as follows:

| 00〉 =| 0〉⊗ | 0〉 =

(
1

0

)(
1

0

)
=


1

0

0

0



| 01〉 =| 0〉⊗ | 1〉 =

(
1

0

)(
0

1

)
=


0

1

0

0



| 10〉 =| 1〉⊗ | 0〉 =

(
0

1

)(
1

0

)
=


0

0

1

0



| 11〉 =| 1〉⊗ | 1〉 =

(
0

1

)(
0

1

)
=


0

0

0

1


One can generalize this to the case of n qubits and define an n-qubit state as

| a0, a1, . . . , an−1〉 =| a1〉⊗ | a2〉 . . . | an〉

where each of the components ai takes value 0 or 1. Thus such a state can be simultane-

ously in a linear combination of 2n states and contains this much amount of information.

However, we will see later that much of this information remain hidden and a measure-

ment can only reveal n qubits of information.

Measurement is a very important component of quantum information, because, unlike

the classical, the results in this case are probabilistic. We often talk about measurement

in computational basis which simply means preparing our measurement apparatus in the

basis described above. However, a basis in the Hilbert space need not only be computa-

tional. Any set of vectors in terms of which one can express an arbitrary state forms a

basis as well. To illustrate, in C2 the states | 0〉 and | 1〉 form the computational basis.

However, if we have a general state α0 + β1, a repeated measurement in this basis may

give us information about | α | and | β | but not about any relative phase between the two

complex coefficients. If, however, we made a measurement of this state in what we called

as the diagonal basis which consists of taking the basis vectors as { 1√
2

(
1

1

)
,

1√
2

(
1

−1

)
},

it may reveal some information about the relative phase as well.
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4 Single Qubit Gates

Having discussed the essential logic elements qubits, which correspond to the classical

bits, we now discuss the logic gates which acts on a quantum state to give another state

in the same Hilbert space. The situation is very similar to the case of classical computing

where we only need to construct some universal logic gates (e.g. NOR and NAND) in

terms of which any boolean function may be expressed. In quantum computer as well,

we will need only a few elementary gates. There is one major difference between the

quantum and classical case. In quantum world, the states develop unitarily (except at the

time of measurement) and therefore, the gates must perform their operations unitarily

and reversibly. (In classical computation as well, one of the gates, viz, the NOT gate is

reversible but not all are). Like in a classical computers we would have here registers for

input and output, which now has the capability of storing linear combination of states.

In performing computation, we need some additional registers which will be termed as

ancilla. The unitary operations preserve the norm of a quantum state. We may recall

that the single qubit states have a geometric representation on a unit sphere called Bloch

sphere. Since the unitary operations preserve the length of a vector, they would take

one point on the Bloch sphere to another point on the same sphere, which means the

operations correspond to rigid rotation and reflection on the sphere.

In terms of the matrix representation, the situation is as follows. Since the operations

will be performed on a state

(
α

β

)
resulting in another state

(
α′

β′

)
, the operators which

act on the states are represented as a 2× 2 matrix. We will show in the following that a

2× 2 matrix can be represented in the form

U = eiα exp (−iθn̂ · ~σ/2)

where α and θ are real numbers, n̂ is a unit vector in space and ~σ is Pauli vector having

the components

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
To prove this, we proceed as follows. Let the matrix be

U =

(
a b

c d

)
where a, b, c, d are, in general complex. It may be noted that any 2 × 2 matrix may be

written as a linear combination of the identity matrix I and the Pauli matrices given
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above. Writing the matrix as

U = u0I + u1σx + u2σy + u3σz

we have,

UU † = (| u0 |2 + | u1 |2 + | u2 |2 + | u3 |2)I + [u0u
∗
1 + u∗0u1 + i(u2u

∗
3 − u3u∗2)]σx

= [u0u
∗
2 + u∗0u2 + i(u3u

∗
1 − u1u∗3)]σy + [u0u

∗
3 + u∗0u3 + i(u1u

∗
2 − u2u∗1)]σz

where we have used the relations σ2
i = I and σiσj = iεijkσk. Since this to be an identity

matrix, we must have the following:

| u0 |2 + | u1 |2 + | u2 |2 + | u3 |2 = 1

u0u
∗
1 + u∗0u1 + i(u2u

∗
3 − u3u∗2) = 0

u0u
∗
2 + u∗0u2 + i(u3u

∗
1 − u1u∗3) = 0

u0u
∗
3 + u∗0u3 + i(u1u

∗
2 − u2u∗1) = 0

These equations may be satisfied if we choose

u0 = eiα cos(θ/2)

u1 = −ieiα sin(θ/2)nx

u2 = −ieiα sin(θ/2)ny

u3 = −ieiα sin(θ/2)nz

where n2
x + n2

y + n2
z = 1.

5 Single Qubit Gates

We had seen in the last lecture that the classical NOT gate is a reversible gate. Its

quantum counterpart which maps the state | 0〉 to | 1〉 and vice versa is provided by

Pauli’s σx matrix. The gate is called an X-gate, whose matrix representation is given by

X : σx =

(
0 1

1 0

)
NOT gate is the only single qubit gate possible in classical computing. However, because

of the nature of the quantum states, there are other possibilities existing here. One such

is a phase gate, which acting on the state | 0〉 leaves it unchanged but acting on the state

| 1〉 gives − | 1〉
Phase Gate : | 0〉 →| 0〉 | 1〉 → − | 1〉

The matrix representation of the corresponding operator is given by Pauli matrix σz and

the gate is known as the Z-gate
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Z : σz =

(
1 0

0 −1

)
In general, one could talk about a selective phase operation for the single qubit states,

which selectively gives a phase of ϕ to the qubit | 1〉 while leaving | 0〉 unchanged

| 0〉 →| 0〉 | 1〉 → eiϕ | 1〉

the corresponding matrix representation being

P (ϕ) : =

(
1 0

0 eiϕ

)
It is easily seen that the Z-gate is a special case of the above with ϕ = π. There are a few

other special phase gates which are important in quantum computing, one of them being

T-gate with corresponds to ϕ = π/4 having a matrix representation

T Gate : =

(
1 0

0 eiπ/4

)
Interestingly, this gate is also known as π/8 gate, the reason for this nomenclature is due

to the fact that if one takes away an overall phase factor of eiπ/8, the structure of the gate

becomes

π

8
Gate : =

(
e−iπ/8 0

0 eiπ/8

)
Other possibilities include a rotation in a plane. For instance, the operator for rotation

about the z-axis is given by the rotation matrix(
cos θ − sin θ

sin θ cos θ

)

5.1 Hadamard Gate

One of the most important single qubit gate is a Hadamard Gate, because this is a gate

which acting on qubit | 0〉 or | 1〉 would mix them up:

| 0〉 →| +〉 =
| 0〉+ | 1〉√

2
; | 1〉 →| −〉 =

| 0〉− | 1〉√
2

We have seen that every state has a distinct position on a Bloch sphere. The effect of

Hadamard gate on the single qubit state is a rotation by π/2 about the y-axis followed by a

reflection in the equatorial plane. The figure shown illustrates this. It may be remembered

that in a rotation, the sense of rotation is taken to be counterclockwise. Thus when a

rotation about y-axis by π/2 is given, the states | 0〉 and | 1〉 come respectively to the
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position of | +〉 and | −〉 respectively, as is required by Hadamard gate. However, when

one applies Hadamard gate on the state | +〉, it should give the state | 0〉 and likewise

the state | −〉 should give the | 1〉. However, the rotation above interchanged these two

positions. A reflection in the equatorial plane would give the correct positions for these

two without affecting the positions of the states in that plane.

Reflection

0

1

+

_

+

_

0

1

_

1

0

+

y

x x x

y y

z z
z

Rotation

The matrix representation of the Hadamard gate is seen to be

H Gate : =
1√
2

(
1 1

1 −1

)

5.2 Two Qubit Gates

We have seen that in classical computing NAND gate acts as a universal gate in the sense

that any boolean operation may be performed using NAND gates alone. Likewise, all

quantum operations may be performed to arbitrary degree of precision by using a subset

of single qubic gates and a two qubit gate alone. The two qubic gate which is a member

of the universal gate set is the Controlled NOT or in short CNOT gate. This gate

takes two inputs, a control and a target. When the control bit is 0, the target bit remains

unchanged but when the control bit is 1, the target is flipped.

a’=a

b b’

a

Thus the effect of control gate is as follows:

| 0〉⊗ | b〉 →| 0〉⊗ | b〉
| 1〉⊗ | b〉 →| 0〉⊗ | b̃〉

where b̃ stands for complement of b. With the computational basis as the basis for the



c©D. K. Ghosh, IIT Bombay 8

two qubits, the matrix representation for the CNOT gate is given by
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


We have earlier talked about the Bell basis. We may design a quantum circuit using a

Hadamard gate and a CNOT gate.

2

H1

0

00 11

Note that CNOT gate provides the entanglement required for the Bell state. Starting

with | 1〉⊗ | 0〉, we subject first state to a Hadamard gate. This makes the control bit

to
| 0〉− | 1〉√

2
, so that the two qubit state is given by

1√
2

(| 00〉− | 10〉), which is still

factorable and hence are not entangled. However, when the CNOT gate is applied to

these two states, one gets a Bell state
1√
2

(| 00〉− | 11〉) because while the first term is

unchanged, in the second term, the control bit being 1, the target which was 0 got flipped.

A two qubit gate which is useful is a SWAP gate which interchanges two states :

US | ψ〉⊗ | φ〉 →| φ〉⊗ | ψ〉

The operator representation of this gate is

US =| 00〉〈00 | + | 01〉〈10 | + | 10〉〈01 | + | 11〉〈11 |

The schematic diagram of the gate is as follows:

ψ

φ ψ

φ

6 Three Qubit Gates

One can define some three qubit gates as well, though they are strictly not required.

There is a gate called Controlled-Controlled NOT or CCNOT gate, which has two
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qubits as the control and a third qubit as the target. In this case, the target bit is flipped

only when both the control bits are equal to 1. This gate is reversible and can simulate

all classic gates. However, this is not used in practice in the classical situation because of

accumulation of garbage. The gate is also known as Toffoli Gate. The representation of

a CCNOT gate is as follows:

ab

a’=a

b’=b

c’= c 

a

b

c

In the diagram the symbol ⊕ stands for addition modulo 2 operation. The operator

representation for this gate is

UCCNOT = (| 00〉〈00 | + | 01〉〈01 | + | 10〉〈10 |)⊗ I+ | 11〉〈11 | ⊗X

where the operators act on the three qubits in the order in which the above relation is

written, i.e. only if the AND operation on the targets yield 1, then only the target bit is

flipped. The truth table of the Toffoli gate is as follows

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0
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The matrix representation of the CCNOT gate is given by an 8× 8 matrix:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Yet another three qubit gate that is useful is controlled SwapCSWAP gate, which in-

terchanges two target bits if the control bit is 1. There are two equivalent diagrammatic

representation of this gate which are shown below:

c’

b’

c

a a’

b

This gate is also known as Fredkin Gate. The Truth table of the Fredkin gate is as

follows:

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1


